Math, asked by anshu6584, 10 months ago

*(x+y)2 – (x-y)2 equal to​

Answers

Answered by angelgoyal1212
0

Answer:

4xy

Step-by-step explanation:

=(x+y+x-y) (x+y-x+y)

=2x×2y

Answered by Anonymous
1

\huge{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\bold{(x+y)^{2}-(x-y)^{2}=4xy}

\huge\orange{Given:-}

\bold{=>(x+y)^{2}-(x-y)^{2}}

\bold\blue{Explanation:}

\bold{Identities \ are:}

\bold{(a+b)^{2}=a^{2}+2ab+b^{2}}

\bold{(a-b)^{2}=a^{2}-2ab+b^{2}}

\bold{a^{2}-b^{2}=(a+b)(a-b)}

\bold\green{\underline{\underline{Solution:-}}}

\bold{Method \ (I)}

\bold{=>(x+y)^{2}-(x-y)^{2}}

\bold{By \ identities}

\bold{(a+b)^{2}=a^{2}+2ab+b^{2}}

\bold{(a-b)^{2}=a^{2}-2ab+b^{2}}

\bold{=>x^{2}+2xy+y^{2}-(x^{2}-2xy+y^{2})}

\bold{=>x^{2}+2xy+y^{2}-x^{2}+2xy-y^{2}}

\bold{=>2xy+2xy}

\bold{=>4xy}

___________________________________

\bold{Method \ (II)}

\bold{=>(x+y)^{2}-(x-y)^{2}}

\bold{By \ identity}

\bold{a^{2}-b^{2}=(a+b)(a-b)}

\bold{=>(x+y+x-y)(x+y-x+y)}

\bold{=>2x×2y}

\bold{=>4xy}

\bold\purple{\tt{\therefore{(x+y)^{2}-(x-y)^{2}=4xy}}}

Similar questions