Math, asked by thakursapnaz12345678, 3 months ago

(x+y)²/ xy + (y+z)1/yz (z+x)1/xz if x+y+z = 0​

Answers

Answered by kavitasinghprisa
0

Step-by-step explanation:

Given

x+y+z=1,xy+yz+zx=−1 and xyz=−1

x

3

+y

3

+z

3

−3xyz=(x+y+z)(x

2

+y

2

+z

2

−xy−yz−zx)

x

3

+y

3

+z

3

−3(−1)=1(x

2

+y

2

+z

2

)−(−1)

x

3

+y

3

+z

3

+3=x

2

+y

2

+z

2

+1

x

3

+y

3

+z

3

+2=x

2

+y

2

+z

2

(x+y+z)

2

=x

2

+y

2

+z

2

+2xy+2yz+2xz

1

2

=x

2

+y

2

+z

2

+2(−1)

x

2

+y

2

+z

2

=1+2

x

2

+y

2

+z

2

=3

x

3

+y

3

+z

3

+2=3

x

3

+y

3

+z

3

=1

Answered by vasaanya
0

Answer:

Given

x+y+z=1,xy+yz+zx=−1 and xyz=−1

x

3

+y

3

+z

3

−3xyz=(x+y+z)(x

2

+y

2

+z

2

−xy−yz−zx)

x

3

+y

3

+z

3

−3(−1)=1(x

2

+y

2

+z

2

)−(−1)

x

3

+y

3

+z

3

+3=x

2

+y

2

+z

2

+1

x

3

+y

3

+z

3

+2=x

2

+y

2

+z

2

(x+y+z)

2

=x

2

+y

2

+z

2

+2xy+2yz+2xz

1

2

=x

2

+y

2

+z

2

+2(−1)

x

2

+y

2

+z

2

=1+2

x

2

+y

2

+z

2

=3

x

3

+y

3

+z

3

+2=3

x

3

+y

3

+z

3

=1

Step-by-step explanation:

hope this helps you

Similar questions