[(x+y)^2-z^2][(x-y)^2-z^2]
Answers
Step-by-step explanation:
STEP
STEP1
STEP1:
STEP1: x - y - z
STEP1: x - y - z Simplify —————————
STEP1: x - y - z Simplify ————————— x + y - z
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step1
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step1:
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step1: (((x-y)2)-(z2)) (x-y-z)
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step1: (((x-y)2)-(z2)) (x-y-z) ——————————————— ÷ ———————
STEP1: x - y - z Simplify ————————— x + y - zEquation at the end of step1: (((x-y)2)-(z2)) (x-y-z) ——————————————— ÷ ——————— (((x+y)2)-(z2)) x+y
:
: x2 - 2xy + y2 - z2
: x2 - 2xy + y2 - z2 Simplify ——————————————————
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2:
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z)
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ———————————
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3:
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3: x2-2xy+y2-z2 x-y-z
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3: x2-2xy+y2-z2 x-y-z Divide —————————————— by ———————
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3: x2-2xy+y2-z2 x-y-z Divide —————————————— by ——————— (x2+2xy+y2-z2) (x+y-z)
: x2 - 2xy + y2 - z2 Simplify —————————————————— x2 + 2xy + y2 - z2Equation at the end of step2: (x2 - 2xy + y2 - z2) (x - y - z) ———————————————————— ÷ ——————————— x2 + 2xy + y2 - z2 x + y - z STEP3: x2-2xy+y2-z2 x-y-z Divide —————————————— by ——————— (x2+2xy+y2-z2) (x+y-z) 3.1 Dividing fractions
Step by Step Solution
STEP1:
x - y - z
Simplify —————————
x + y - z
Equation at the end of step1:
(((x-y)2)-(z2)) (x-y-z)
——————————————— ÷ ———————
(((x+y)2)-(z2)) x+y-z
STEP2:
x2 - 2xy + y2 - z2
Simplify ——————————————————
x2 + 2xy + y2 - z2
Equation at the end of step 2:
(x2 - 2xy + y2 - z2) (x - y - z)
———————————————————— ÷ ———————————
x2 + 2xy + y2 - z2 x + y - z
STEP 3:
x2-2xy+y2-z2 x-y-z
Divide —————————————— by ———————
(x2+2xy+y2-z2) (x+y-z)
3.1 Dividing fractions
To divide fractions, write the divison as multiplication by the reciprocal of the divisor :
x2 - 2xy + y2 - z2 x - y - z x2 - 2xy + y2 - z2 x + y - z
———————————————————— ÷ ——————————— = ———————————————————— • ———————————
(x2 + 2xy + y2 - z2) (x + y - z) (x2 + 2xy + y2 - z2) (x - y - z)
Final result :
(x2 - 2xy + y2 - z2) • (x + y - z)
——————————————————————————————————
(x2 + 2xy + y2 - z2) • (x - y - z)