Math, asked by SHARWANI02, 2 months ago

(x+y) (2x+y) +(x+2y) (x-y)​

Answers

Answered by okyereflair
0

Answer:

Step-by-step explanation:

Attachments:
Answered by suraj5070
399

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \bf \Big(x+y\Big)\Big(2x+y\Big) +\Big(x+2y\Big)\Big(x-y\Big)

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf \implies \Big(x+y\Big)\Big(2x+y\Big) +\Big(x+2y\Big)\Big(x-y\Big)

 \sf \bf \implies x\Big(2x+y\Big)+y\Big(2x+y\Big)+x\Big(x-y\Big)+2y\Big(x-y\Big)

 \sf \bf \implies 2{x}^{2}+xy+2xy+{y}^{2}+{x}^{2}-xy+2xy-2{y}^{2}

 \sf \bf \implies 2{x}^{2}+3xy+{y}^{2}+{x}^{2}+xy-2{y}^{2}

 \sf \bf \implies 2{x}^{2}+{x}^{2} +3xy+xy+{y}^{2} - 2{y}^{2}

\implies{\boxed {\boxed {\color {aqua} {\sf \bf 3{x}^{2}+4xy-{y}^{2}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 {\color {springgreen} \underline {\sf Identities}}

 \sf \bf {(a+b)}^{2}={a}^{2}+2ab+{b}^{2}

 \sf \bf {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}

 \sf \bf (a+b) (a-b) ={a}^{2}-{b}^{2}

Similar questions