Math, asked by rajdarshan096, 9 months ago

x:y=3:4 then x^2+xy+y^2/x^2-xy+y^2​

Answers

Answered by akshatnarayansingh20
0

Answer:

plzzzzzzz mark this as the brainliest answer

Step-by-step explanation:

We have y−x=1 or y=1+x

Substitute y=1+x in the equation we get

x 2 +y 2 −xy=3

⇒x 2 +(1+x) 2 −x(1+x)=3

⇒x 2 +x 2 +2x+1−x−x 2 −3=0

⇒x 2 +x−2=0

⇒(x−1)(x+2)=0

∴x=1,−2

When x=1⇒y=1+x=1+1=2

When x=−2⇒y=1+x=1−2=−1

∴{1,2} and {−2,−1} are the solutions of the above equations.

Answered by Anonymous
54

Given:

  •  \tt \: x:y=3:4 \:  \:  then \:  \:  \:   \dfrac{x^2+xy+y^2}{x^2-xy+y^2}

Solution:

 \\  \tt \: Let \:  \: x : y =  \frac{x}{y}  =  \frac{3}{4}  = k \\   \\

 \\  \therefore \tt \:  \:  \: x = 3k \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:   \: y = 4k \\  \\

  \\ \tt Now, \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:   \\  \\  \: \tt   \dfrac{x^2+xy+y^2}{x^2-xy+y^2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\  \tt  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{(3k ) {}^{2}  + (3k)(4k) +(4 k) {}^{2} }{(3k ) {}^{2}   -  (3k)(4k) +(4 k) {}^{2}} \\  \\  \\  \tt   =   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{(3k ) {}^{2}  + 12k {}^{2}  +(4 k) {}^{2} }{(3k ) {}^{2}   -  12k {}^{2}  +(4 k) {}^{2}}  \\  \\  \\  \tt \:  =    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{9k {}^{2}  + 12k {}^{2}  +16k{}^{2} }{9k {}^{2}   -  12k {}^{2}  +16 k {}^{2}} \\  \\  \\  \tt \:  =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{37k {}^{2} }{ 25k {}^{2}  - 12{}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  \tt =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{37k {}^{2} }{13 {k}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\

  • Canceling k² both sides:

  \:  \:  \:  \:  \:  \tt =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{37k {}^{2} }{13 {k}^{2} } \\  \\  \\   \tt =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{37\cancel{k² } }{13 \cancel{k² }} \\  \\  \\ \tt =  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{37 }{13 } \\  \\  \\ \tt =  \:  \:  \:   \:  \:  \:  \: {37 } : {13 }

________________________________________

Hope it Helps you :)

Similar questions