Math, asked by ajaynarayananl2004, 3 months ago

x-y=36 , xy=1440 find x and y

Answers

Answered by anindyaadhikari13
11

Required Answer:-

Given:

 \dag \: \begin{cases}\sf x - y = 36 \\ \sf xy = 1440 \end{cases}

To Find:

  • The values of x and y.

Solution:

This problem can be solved in two ways.

1. First approach.

Given that,

\sf \implies x - y = 36 \: ...(i)

Squaring both sides, we get,

\sf \implies (x - y)^{2} =  {36}^{2}

Using identity (a - b)² = a² - 2ab + b², we get,

\sf \implies  {x}^{2} - 2xy +  {y}^{2}   =1296

Adding 4xy on both sides, we get,

\sf \implies  {x}^{2} + 2xy +  {y}^{2}   =1296 + 4xy

Using identity (a + b)² = a² + 2ab + b², we get,

\sf \implies  {(x + y)}^{2} = 1296 + 4xy

Substituting the value of xy, we get,

\sf \implies  {(x + y)}^{2} = 1296 + 4 \times 1440

\sf \implies  {(x + y)}^{2} = 1296 + 5760

\sf \implies  {(x + y)}^{2} =7056

\sf \implies  (x + y)= \sqrt{7056}

\sf \implies  (x + y)= \pm 84

Therefore,

\sf \implies  (x + y)=84 \: ...(ii)

\sf \implies  (x + y)= -84 \: ...(iii)

Adding equations (i) and (ii), we get,

 \sf \implies 2x = 120

 \sf \implies x = 60

Therefore,

 \sf \implies x - y = 36

 \sf \implies 60 - y = 36

 \sf \implies y = 60 - 36

 \sf \implies y =24

From here,

 \sf \implies x = 60 \: and \: y = 24

Again, Adding equations (i) and (iii), we get,

 \sf \implies 2x =  - 48

 \sf \implies x = -24

Therefore,

 \sf \implies x - y = 36

 \sf \implies  - 24- y = 36

 \sf \implies - y = 36 + 24

 \sf \implies - y = 60

 \sf \implies y = -60

Thus,

 \sf\implies x = 60,  - 24 \ and \ y = - 60,24

2. Second Approach.

Given that,

\sf \implies x - y = 36

\sf \implies x  = y + 36

Also,

\sf \implies xy = 1440

Substituting the values of x, we get,

\sf \implies y(y + 36) = 1440

\sf \implies  {y}^{2}  + 36y= 1440

\sf \implies  {y}^{2}  + 36y -  1440 = 0

\sf \implies  {y}^{2} - 24y + 60y-  1440 = 0

\sf \implies y(y- 24)+ 60(y- 24)= 0

\sf \implies (y+ 60)(y- 24)= 0

By zero product rule,

\sf \implies (y+ 60) = 0 \: or \: (y- 24)= 0

Therefore,

\sf \implies y =  -60 ,24

Therefore, when y = -60,

 \sf \implies x = y + 36

 \sf \implies x =  - 60+ 36

 \sf \implies x =  -24

Also, when y = 24,

 \sf \implies x = y + 36

 \sf \implies x = 24+ 36

 \sf \implies x =60

Therefore,

\sf \implies x= 60 , - 24

So,

 \sf \implies x = 60,  - 24 \ and \ y = - 60,24

Answer:

 \dag \: \begin{cases}\sf x = 60,  - 24 \\ \sf y = - 60,24\end{cases}

Similar questions