Math, asked by kashab7691, 9 months ago

x+y+3z=10, x-y-z=-2, 2x+3y+4z=4 by matrix method

Answers

Answered by pujarivaishnavi7
9

answer for your question......

Attachments:
Answered by friendmahi89
4

The given equations are

x+y+3z = 10                          x-y-z = -2                          2x+3y+4z = 4

Converting the equations in matrix form we get,

A = \left[\begin{array}{ccc}1&1&3\\1&-1&-1\\2&3&4\end{array}\right]                 X= \left[\begin{array}{ccc}x\\y\\z\end{array}\right]         B= \left[\begin{array}{ccc}10\\-2\\4\end{array}\right]

First we will find the inverse of A

|A| = 1{-4-(-3)} - 1{4-(-2)} + 3{3-(-2)}

    = 1(-1) -1(6) + 3(5)

    = -1-6+15

    = 8 ≠ 0  Therefore, the inverse exists.

Now,

A_{11} = -1                    A_{12} = -6                            A_{13} = 5

A_{21} = 5                    A_{22} = -2                            A_{23} = -1

A_{31} = 2                    A_{32} = 4                             A_{33}  = -2

adj A = \left[\begin{array}{ccc}-1&-6&5\\5&-2&-1\\2&4&-2\end{array}\right] ^{'} = \left[\begin{array}{ccc}-1&5&2\\-6&-2&4\\5&-1&-2\end{array}\right]

Therefore, A^{-1} =   \frac{adj A}{|A|} }

                         =   \frac{1}{8} \left[\begin{array}{ccc}-1&5&2\\-6&-2&4\\5&-1&-2\end{array}\right]

Now, A^{-1}B = X

        \frac{1}{8}\left[\begin{array}{ccc}-1&5&2\\-6&-2&4\\5&-1&-2\end{array}\right] \left[\begin{array}{ccc}10\\-2\\4\end{array}\right] = \left[\begin{array}{ccc}x\\y\\z\end{array}\right]

        \frac{1}{8} \left[\begin{array}{ccc}-16\\-40\\48\end{array}\right] = \left[\begin{array}{ccc}x\\y\\z\end{array}\right]

       \left[\begin{array}{ccc}-2\\-5\\6\end{array}\right] = \left[\begin{array}{ccc}x\\y\\z\end{array}\right]

       

So, x= -2 ,  y= -5 ,   z= 6.

   

Similar questions