Math, asked by seannamathiass, 9 months ago

√x/y=4, 1/x+1/y=1/xy ​

Answers

Answered by harshalalaspure0204
39

Answer:I think x=16/17and y=1/17

Step-by-step explanation:

Root x/root y =4

x/y=16------by squaring-------

x=16y

x-16y=0----------eq.1

1/x+1/y=1/xy

y+x/xy=1/xy--------cross multiply

x+y=1---------dividing by xy---eq2

By subtracting eq 1and2,we get x=16/17andy=1/17

Answered by jitumahi435
5

Given:

\sqrt{\dfrac{x}{y}} =4                      ........... (1)

and \dfrac{1}{x} +\dfrac{1}{y} =\dfrac{1}{xy}        ........... (2)

We have, to find the values of x and y = ?

Solution:

Squaring both sides in equation (1), we get

(\sqrt{\dfrac{x}{y}})^2 =4^2  

\dfrac{x}{y}=16

⇒ x = 16y                    ........... (3)

\dfrac{1}{x} +\dfrac{1}{y} =\dfrac{1}{xy}  

\dfrac{x+y}{xy}=\dfrac{1}{xy}  

⇒ x + y = 1               ........... (4)  

From equations (3) and (4), we get

16y + y = 1  

⇒ 17y = 1  

⇒  y = \dfrac{1}{17}  

Put y = \dfrac{1}{17}   in equation (4), we get

x + \dfrac{1}{17} = 1        

⇒ x = 1 - \dfrac{1}{17}

⇒ x = \dfrac{16}{17}

Thus, x = \dfrac{16}{17} and  y = \dfrac{1}{17}  

Similar questions