Math, asked by paliza370, 1 year ago

X-Y=8 & X^2 -Y^2=16m then find the product of X and Y

Answers

Answered by abhi569
6

Given, x^2 - y^2 = 16


We know, a^2 - b^2 = ( a + b )( a - b ).

∴ x^2 - y^2 = ( x + y )( x - y )


⇒ ( x + y )( x - y ) = 16

From the question, value of ( x - y ) = 8

∴ ( x + y )( x - y ) = ( x + y )8


⇒ 8( x + y ) = 16

⇒ x + y = \dfrac{16}{8}

⇒ x + y = 2


Now, x - y = 8 and x + y = 2

Adding x - y and x + y


x - y = 8

x + y = 2

______

2x = 10

_____


x = \dfrac{10}{2}

x = 5


Substituting the value of x in x - y = 8

⇒ 5 - y = 8

⇒ 5 - 8 = y

⇒ - 3 = y


x = 5 & y = - 3


∴ Product of x and y = 5 x ( - 3 )

                                  = - 15


Hence product of x and y is 15 .

Answered by Panzer786
10
Hey !!

X - Y = 8 ----------(1)

And,

X² - Y² = 16 ---------(2)

From equation (1) , we get

X - Y = 8

X = ( 8 + Y ) ---------(3)

Putting the value of X in equation (2) , we get

X² - Y² = 16

( 8 + Y )² - Y² = 16

(8)² + (Y)² + 2 × 8 × Y - Y² = 16

64 + Y² + 16Y - Y² = 16

16Y = 16 - 64

16Y = -48

Y = -3

Putting the value of Y in equation (3) , we get

X = ( 8 + Y ) = ( 8 - 3 ) = 5

Therefore,

Product of X and Y = 5 × -3 = -15
Similar questions