X-Y=8 & X^2 -Y^2=16m then find the product of X and Y
Answers
Answered by
6
Given, x^2 - y^2 = 16
We know, a^2 - b^2 = ( a + b )( a - b ).
∴ x^2 - y^2 = ( x + y )( x - y )
⇒ ( x + y )( x - y ) = 16
From the question, value of ( x - y ) = 8
∴ ( x + y )( x - y ) = ( x + y )8
⇒ 8( x + y ) = 16
⇒ x + y =
⇒ x + y = 2
Now, x - y = 8 and x + y = 2
Adding x - y and x + y
x - y = 8
x + y = 2
______
2x = 10
_____
x =
x = 5
Substituting the value of x in x - y = 8
⇒ 5 - y = 8
⇒ 5 - 8 = y
⇒ - 3 = y
∴ x = 5 & y = - 3
∴ Product of x and y = 5 x ( - 3 )
= - 15
Hence product of x and y is 15 .
Answered by
10
Hey !!
X - Y = 8 ----------(1)
And,
X² - Y² = 16 ---------(2)
From equation (1) , we get
X - Y = 8
X = ( 8 + Y ) ---------(3)
Putting the value of X in equation (2) , we get
X² - Y² = 16
( 8 + Y )² - Y² = 16
(8)² + (Y)² + 2 × 8 × Y - Y² = 16
64 + Y² + 16Y - Y² = 16
16Y = 16 - 64
16Y = -48
Y = -3
Putting the value of Y in equation (3) , we get
X = ( 8 + Y ) = ( 8 - 3 ) = 5
Therefore,
Product of X and Y = 5 × -3 = -15
X - Y = 8 ----------(1)
And,
X² - Y² = 16 ---------(2)
From equation (1) , we get
X - Y = 8
X = ( 8 + Y ) ---------(3)
Putting the value of X in equation (2) , we get
X² - Y² = 16
( 8 + Y )² - Y² = 16
(8)² + (Y)² + 2 × 8 × Y - Y² = 16
64 + Y² + 16Y - Y² = 16
16Y = 16 - 64
16Y = -48
Y = -3
Putting the value of Y in equation (3) , we get
X = ( 8 + Y ) = ( 8 - 3 ) = 5
Therefore,
Product of X and Y = 5 × -3 = -15
Similar questions
Biology,
7 months ago
English,
7 months ago
Physics,
1 year ago
Environmental Sciences,
1 year ago
English,
1 year ago