x+y=a+b , ax-by=a²-b²
Answers
Method Going to use: Cross Multiplication
→ x + y + (- a - b) = 0
→ ax - by + (- a² + b²) = 0
Solution
→ x/{1(- a² + b²) - (- a - b)(- b)}
→ x/(- a² + b² - ab - b²)
→ x/{- a(a + b)}
→ - y/{1(- a² + b²) - (- a - b)(a)}
→ - y/(- a² + b² + a² + ab)
→ - y/{b(a + b)}
→ 1/{1(- b) - 1(a)}
→ 1/{-(a + b)}
→ x/{- a(a + b)} = 1/{-(a + b)}
→ x = a
→ - y/{b(a + b)} = 1/{-(a + b)}
→ y = b
Question :-- Solve x+y = a+b, and ax-by = a² - b² ..
Solution :--
Let,
→ x+y = a+b -------------- Equation (1)
→ ax-by = a² - b² ---------- Equation (2)
Multiplying Equation (1) both sides by b , we get,
→ b(x+y) = b(a+b)
→ bx + by = ab + b² --------- Equation (3) .
Now, Adding Equation (2) and Equation (3) we get,
bx + by = ab + b²
ax - by = a² - b²
x(a+b) = ab + a²
→ x(a+b) = a(b+a)
(a+b) will be cancel From both sides ,
→ x = a
Putting this value in Equation (1) now, we get,
→ a + y = a + b
→ y = a - a + b