Math, asked by Heatu7799, 25 days ago

x+y = a+b
ax - by = a² - b²
solve using cross multiplication method​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x + y = a + b

and

\rm :\longmapsto\:ax - by =  {a}^{2}  -   {b}^{2}

By using Cross Multiplication method,

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf 1 & \sf a + b  & \sf 1 & \sf 1\\ \\ \sf  - b & \sf  {a}^{2}  -   {b}^{2}    & \sf a & \sf  - b\\ \end{array}} \\ \end{gathered}

Now,

 \sf \:\dfrac{x }{{a}^{2}- {b}^{2}+b(a + b)}  =\dfrac{y}{a(a + b)-({a}^{2}-{b}^{2})}  = \dfrac{ - 1}{ - b - a}

 \sf \:\dfrac{x }{{a}^{2}- {b}^{2}+ba +  {b}^{2} }  =\dfrac{y}{ {a}^{2}+ab-{a}^{2} + {b}^{2}}  = \dfrac{1}{b + a}

\rm :\longmapsto\: \sf \:\dfrac{x }{{a}^{2}+ba}  =\dfrac{y}{ab + {b}^{2}}  = \dfrac{1}{b + a}

 \rm :\longmapsto\:\sf \: \dfrac{x}{a(a + b)}  = \dfrac{y}{b(a + b)}  = \dfrac{1}{a + b}

On multiply each term by a + b, we get

 \rm :\longmapsto\:\sf \: \dfrac{x}{a}  = \dfrac{y}{b}  = 1

\bf\implies \:x = a \:  \:  \:  \: and \:  \:  \:  \:  \: y = b

Similar questions