Math, asked by bhawani2170, 1 year ago

x-y=a+b,ax+by=a2-b2 using cross multiplication method

Answers

Answered by aquialaska
226

Answer:

x = a and y = -b

Step-by-step explanation:

Given Equations are,

x - y = a+b

x - y - (a+b) = 0 ....................(1)

ax + by = a²-b²

ax + by - (a²-b²) = 0 .......................(2)

here,

a_1=1\:,\:b_1=-1\:,\:c_1=-(a+b)\:,\:a_2=a\:,\:b_2=b\:and\:c_2=-(a^2-b^2)

since, \frac{a_1}{a_2}\neq\frac{a_2}{b_2}

There exist unique solution,

By cross multiplication method we get,

\frac{x}{-1\times(-(a^2-b^2))-b\times(-(a+b))}=\frac{y}{-(a+b)\timesa-(-(a^2-b^2))\times1}=\frac{1}{1\timesb-a\times(-1)}

First Consider,

\frac{x}{-1\times(-(a^2-b^2))-b\times(-(a+b))}=\frac{1}{1\timesb-a\times(-1)}

\frac{x}{a^2-b^2+ab+b^2}=\frac{1}{b+a}

\frac{x}{a(a+b)}=\frac{1}{b+a}

x=a

Secondly consider,

\frac{y}{-(a+b)\timesa-(-(a^2-b^2))\times1}=\frac{1}{1\timesb-a\times(-1)}

\frac{y}{-a^2-ab+a^2-b^2}=\frac{1}{a+b}

\frac{y}{-b(a+b)}=\frac{1}{a+b}

y=-b

Therefore, x = a and y = -b

Answered by mou72398
10

Answer:

Here is your answer I hope it will help you....

Attachments:
Similar questions