Math, asked by pg3647154, 1 month ago

x-y=a+bax+by=a2-b2by cross multiplication

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:x - y = a + b

and

\rm :\longmapsto\:ax + by =  {a}^{2} -  {b}^{2}

So, using Cross multiplication method

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 1 & \sf a + b & \sf 1 & \sf  - 1\\ \\ \sf b & \sf {a}^{2} - {b}^{2} & \sf a & \sf b\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 1( {a}^{2} -  {b}^{2}) - b(a + b)}  = \dfrac{y}{a(a + b) - ( {a}^{2} -  {b}^{2})}  = \dfrac{ - 1}{b - ( - a)}

\rm :\longmapsto\:\dfrac{x}{ -{a}^{2} +{b}^{2} - ba -  {b}^{2} }  = \dfrac{y}{ {a}^{2}+ ab -{a}^{2} + {b}^{2}}  = \dfrac{ - 1}{b + a}

\rm :\longmapsto\:\dfrac{x}{ -{a}^{2}- ba }  = \dfrac{y}{ab+ {b}^{2}}  = \dfrac{ - 1}{b + a}

\rm :\longmapsto\:\dfrac{x}{ - a(a + b)}  = \dfrac{y}{b(b + a)}  = \dfrac{ - 1}{b + a}

On multiply by a + b, we get

\rm :\longmapsto\:\dfrac{x}{ - a}  = \dfrac{y}{b}  =  - 1

\rm \implies\:\boxed{ \tt{ \: x = a \: }} \:  \: and \:  \: \boxed{ \tt{ \: y  \: = -  \:  b \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Verification :-

Consider first equation

\rm :\longmapsto\:x - y = a + b

On substituting the values of x and y, we get

\rm :\longmapsto\:a - ( - b) = a + b

\rm :\longmapsto\:a  + b = a + b

Hence, Verified

Consider second equation

\rm :\longmapsto\:ax + by =  {a}^{2} -  {b}^{2}

On substituting the values of x and y, we get

\rm :\longmapsto\:a(a) + b( - b) =  {a}^{2} -  {b}^{2}

\rm :\longmapsto\: {a}^{2} -  {b}^{2}  =  {a}^{2} -  {b}^{2}

Hence, Verified

Similar questions