Math, asked by vamsipriya610, 9 months ago

x/y=cosA/cosB,then xtanA+ytanB/x+y​

Answers

Answered by suhail2070
0

Answer:

ANSWER.

\frac{x \tan(a) + y \tan(b)  }{x + y} =  \frac{ \sin(a) +  \sin(b)  }{ \cos(a)+\cos(b) }  \\  \\ ...(answer)

Step-by-step explanation:

GIVEN :

 \frac{x}{y}  =  \frac{ \cos(a) }{ \cos(b) }

TO FIND :

value \: of \:  \:  \frac{x \tan(a)  + y \tan(b) }{x + y} .

SOLUTION :

 \frac{x}{y}  =  \frac{ \cos(a) }{ \cos(b) }  \\  \\  \frac{x \sin(b) }{y \sin(a) }  =  \frac{ \cos(a)  \sin(b) }{ \sin(a)  \cos(b) }   \\  \\  \frac{x \sin(b) }{y \sin(a) } =  \frac{ \tan(b) }{ \tan(a) }   \\  \\  \frac{x \tan(a) }{y \tan(b) }  =  \frac{ \sin(a) }{ \sin(b) } \\  \\ applying \: componendo \:  \: we \: get \\  \\  \frac{x \tan(a)  + y \tan(b) }{y \tan(b) }  =  \frac{ \sin(a) +  \sin(b)  }{ \sin(b) }  \\  \\ ...(1) \\  \\  \\  \\ now \:  \:  \:  \:  \:  \:  \frac{x}{y}  =  \frac{ \cos(a) }{ \cos(b) }  \\  \\applying \: componendo \\  \\  \frac{x + y}{y}   =  \frac{ \cos(a)  +  \cos(b) }{ \cos(b) }  \\  \\ ...(2) \\  \\ from \: (1) \: and \: (2) \: we \: get \\  \\  \\  \frac{x \tan(a) + y \tan(b)  }{x + y}  =  \tan(b) . \frac{ \frac{ \sin(a) +  \sin(b)  }{ \sin(b) } }{ \frac{ \cos(a)+\cos(b) }{ \cos(b) } }  \\  \\ \frac{x \tan(a) + y \tan(b)  }{x + y} =  \frac{ \sin(a) +  \sin(b)  }{ \cos(a) +\cos(b)}  \\  \\ ...(answer)

Similar questions