Math, asked by shubham21324842, 1 year ago

(x + y) dx + (y - x) dy = 0​

Answers

Answered by shivanikasana5287
3

y=vx then differentiate it wrt x put both the values of dy/dx and y/x in the given eqn nd then solve it

Attachments:
Answered by Anonymous
8

Answer:

\large\bold\red{2 { \tan }^{ - 1} x -  ln( {x}^{2} +  {y}^{2}  )  = 0}

Step-by-step explanation:

Given,

A differential equation

  • (x + y)dx + (y - x)dy = 0

Further solving it,

We get,

 =  > (x + y)dx = (x - y)dy \\  \\  =  >  \frac{dy}{dx}  =  \frac{x + y}{x - y}

Now,

Dividing both Numerator and Denominator by x on RHS,

We get,

 =  >  \frac{dy}{dx}  =  \frac{1 +  \frac{y}{x} }{1 -  \frac{y}{x} }  \:  \:  \:  \:  \: ...........(i)

Now,

Let's assume that,

y = vx

Differentiating both sides wrt x,

We get,

 =  >  \frac{dy}{dx}  = v + x \frac{dv}{dx}

Therefore,

Substituting these values in eqn (i),

We get,

 =  > v + x \frac{dv}{dx}  =  \frac{1 + v}{1 - v}  \\  \\  =  > x \frac{dv}{dx}  =  \frac{1 + v}{1 - v}  - v \\  \\  =  > x \frac{dv}{dx}  =  \frac{1 + v - v +  {v}^{2} }{1 - v}  \\  \\  =  > x \frac{dv}{dx}  =  \frac{1 +  {v}^{2} }{1 - v}  \\  \\  =  >  \frac{1 - v}{1 +  {v}^{2} } dv =  \frac{1}{x} dx \\  \\  =  >  \frac{1}{1 +  {v}^{2} } dv -  \frac{v}{1 +  {v}^{2} } dv =  \frac{1}{x} dx \\  \\  =  >  \frac{1}{1 +  {v}^{2} } dv -  \frac{1}{2}  \times  \frac{2v}{1 +  {v}^{2} } dv =  \frac{1}{x} dx

Integrating both sides,

We get,

\int \frac{1}{1 +  {v}^{2} } dv -  \frac{1}{2} \int \frac{2v}{1 +  {v}^{2} } dv = \int \frac{1}{x} dx

But,

We know that,

  • \int \frac{1}{1 +  {x}^{2} } dx =  { \tan }^{ - 1} x

  • \int \frac{2x}{1 +  {x}^{2} }dx  =  ln(1 +  {x}^{2} )

  • \int \frac{1}{x} dx =  ln(x)

Therefore,

Substituting the values,

We get,

 =  >  { \tan}^{ - 1} v -  \frac{ ln( 1 +  {v}^{2} ) }{2}  =  ln(x)

Further,

Substituting the values of v,

We get,

 =  >  { \tan }^{ - 1}  \frac{y}{x}  -  \frac{ ln(1 +  {( \frac{y}{x}) }^{2} ) }{2}  =  ln(x)  \\  \\  =  >  2{ \tan }^{ - 1 }  \frac{y}{x}  -  ln( \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} } )  = 2 ln(x)  \\  \\  =  > 2 { \tan }^{  - 1}  \frac{y}{x}  = 2 ln(x)  +  ln( \frac{ {x}^{2}  +  {y}^{2} }{ {x}^{2} } )

But,

We know that,

  • b \: ln(a)  = ln( {a}^{b} )

  •  ln(a)  +  ln(b)   =  ln(ab)

Therefore,

We get,

 =  > 2 { \tan}^{ - 1} x =  ln( {x}^{2} )  +  ln( \frac{ {x}^{2} +  {y}^{2}  }{ {x}^{2} } )  \\  \\  =  > 2 { \tan }^{ - 1} x =  ln( {x}^{2} \times  \frac{ {x}^{2}  +  {y}^{2} }{ {x}^{2} }  )  \\  \\  =  > 2 { \tan }^{ - 1} x =  ln( {x}^{2}  +  {y}^{2} )  \\  \\  =  > 2 { \tan }^{ - 1} x -  ln( {x}^{2} +  {y}^{2}  )  = 0

Hence,

Required Solution of this DE is,

  • \large\bold{2 { \tan }^{ - 1} x -  ln( {x}^{2} +  {y}^{2}  )  = 0}

Similar questions