x+y=log(x+y) find dy/dx please answer the question step by step ,those who don't know please not comment it
Answers
Given function is
On differentiating both sides w. r. t. x, we get
We know,
and
So, using this result, we get
More to know :-
Answer:
Solution−
Given function is
\rm :\longmapsto\:x + y = log(x + y):⟼x+y=log(x+y)
On differentiating both sides w. r. t. x, we get
\rm :\longmapsto\:\dfrac{d}{dx}(x + y) = \dfrac{d}{dx}log(x + y):⟼
dx
d
(x+y)=
dx
d
log(x+y)
We know,
\boxed{ \tt{ \: \dfrac{d}{dx}logx = \frac{1}{x} \: }}
dx
d
logx=
x
1
and
\boxed{ \tt{ \: \dfrac{d}{dx}x = 1 \: }}
dx
d
x=1
So, using this result, we get
\rm :\longmapsto\:1 + \dfrac{dy}{dx} = \dfrac{1}{x + y}\dfrac{d}{dx}(x + y):⟼1+
dx
dy
=
x+y
1
dx
d
(x+y)
\rm :\longmapsto\:1 + \dfrac{dy}{dx} = \dfrac{1}{x + y}\bigg(1 + \dfrac{dy}{dx} \bigg):⟼1+
dx
dy
=
x+y
1
(1+
dx
dy
)
\rm :\longmapsto\:1 + \dfrac{dy}{dx} = \dfrac{1}{x + y} + \dfrac{1}{x + y} \dfrac{dy}{dx}:⟼1+
dx
dy
=
x+y
1
+
x+y
1
dx
dy
\rm :\longmapsto\: \dfrac{dy}{dx} - \dfrac{1}{x + y} \dfrac{dy}{dx} = \dfrac{1}{x + y} - 1:⟼
dx
dy
−
x+y
1
dx
dy
=
x+y
1
−1
\rm :\longmapsto\: \bigg(1 - \dfrac{1}{x + y}\bigg)\dfrac{dy}{dx} = \dfrac{1}{x + y} - 1:⟼(1−
x+y
1
)
dx
dy
=
x+y
1
−1
\rm :\longmapsto\: \bigg(\dfrac{x + y - 1}{x + y}\bigg)\dfrac{dy}{dx} = \dfrac{1 - x - y}{x + y}:⟼(
x+y
x+y−1
)
dx
dy
=
x+y
1−x−y
\rm :\longmapsto\: \bigg(\dfrac{x + y - 1}{x + y}\bigg)\dfrac{dy}{dx} = - \: \dfrac{x + y - 1}{x + y}:⟼(
x+y
x+y−1
)
dx
dy
=−
x+y
x+y−1
\rm \implies\:\boxed{ \tt{ \: \dfrac{dy}{dx} \: = \: - \: 1 \: }}⟹
dx
dy
=−1
More to know :-
\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}
f(x)
k
sinx
cosx
tanx
cotx
secx
cosecx
x
logx
e
x
dx
d
f(x)
0
cosx
−sinx
sec
2
x
−cosec
2
x
secxtanx
−cosecxcotx
2
x
1
x
1
e
x