Math, asked by rakhshandirect5094, 1 year ago

x^y=logx then dy/dx at x=e is:

Answers

Answered by Swarup1998
0

Given : x^{y}=logx

To find : \frac{dy}{dx} at x=e

Solution :

  • Given x^{y}=logx

  • Taking log to both sides, we get

  • ylogx=log(logx)

  • Differentiating both sides with respect to x, we get

  • \frac{y}{x}+\frac{dy}{dx}logx=\frac{1}{xlogx}

  • When x=e, we get

  • \frac{y}{e}+\frac{dy}{dx}loge=\frac{1}{eloge}

  • \Rightarrow \frac{y}{e}+\frac{dy}{dx}=\frac{1}{e}

  • \Rightarrow \frac{dy}{dx}=\frac{1}{e}-\frac{y}{e}

  • \Rightarrow \boxed{\frac{dy}{dx}=\frac{1-y}{e}}

  • This is the required derivative.

Answer : \frac{dy}{dx}=\frac{1-y}{e} at x=e

Similar questions