Math, asked by dtnikam4602, 1 year ago

x + y= pi/4 , prove (1 + tan x)(1 + tan y)=2

Answers

Answered by sushant2505
59
Hi...☺

Here is your answer...✌

x + y = \frac{\pi}{4} \\ \\ \tan(x + y) = \tan\frac{\pi}{4} \\ \\ \frac{ \tan x + \tan y}{1 - \tan x \tan y} = 1 \\ \\ \tan x + \tan y = 1 - \tan x \tan y \\ \\ \tan x + \tan y + \tan x \tan y = 1 \\ \\ Adding \: \: 1 \: \: both \: sides \: \\ We\: get,\\ \\ 1 + \tan x + \tan y + \tan x \tan y = 1 + 1 \\ \\ (1 + \tan x) + \tan y (1+ \tan x) = 2 \\ \\ (1+ \tan x) (1+ \tan y) = 2

[ Proved ]
Answered by QueenOfKnowledge
23

\huge\mathfrak{Answer}

Given,

x + y =  \frac{\pi}{4}

 =  > tan(x + y) = tan \frac{\pi}{4}

 \frac{tanx + tany}{1 - tanx.tany}  = 1

tan x + tan y = 1 - tan x tan y

tan x + tan y + tan x tan y = 1

Adding 1 on both sides

1 + tan x + tan y + tan x tan y = 2

(1+tan x) + tan y (1+tan x)

☆_________________________

==> ( 1+tan x) ( 1+ tan y) = 2

_________________________☆

Similar questions