x+y verises x-y then prove that x^3+y^3 verises xy(x+y)
Answers
Answered by
0
(x+y)
prop
(x-y)
rArr (x+y)
=k (x-y) (where k
ne
0= variation constant ) <br>
rArr (x+y)/(x-y)=k
<br>
rArr (x+y+x-y)/(x+y-x+y)=(k+1)/(k-1)
[by componendo and dividendo] <br>
rArr (2x)/(2y)=(k+1)/(k-1)rArr(x)/(y)=(k+1)/(k-1)=m("let") [when (k+1)/(k-1)=m]
<br>
rArr (x/y)^(3) =m^(3)
(cubing both the sides )<br>
rArr x^(3)/y^(3)=m^(3)rArr (x^(3)+y^(3))/(x^(3)-y^(3))=(m^(3)+1)/(m^(3)-1)
[by componendo and dividendo] <br>
(x^(3)+y^(3))/(x^(3)-y^(3))=n ["whene" n =(m^(3)+1)/(m^(3)-1)ne0]
<br>
x^(3)+y^(3) =n(x^(3)-y^(3)) and n ne0="variation constant."
<br>
(x^(3)+y^(3))prop(x^(3)-y^(3))(proved)
plese mark me as a brenllist
Similar questions
History,
8 days ago
Social Sciences,
8 days ago
English,
17 days ago
Chemistry,
17 days ago
Physics,
9 months ago