Math, asked by sonalisancheti007, 6 months ago

(x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x)=0

Answers

Answered by Anonymous
7

Answer:

(x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x)=0

x²+xy-xy-y²+y²+yz-yz-z²+z²+zx-zx-x²=0

(this all terms will cut and will get 0)

0=0

so 0=0.

Answered by Anonymous
0

\huge{\boxed{\mathbb{\green{ANSWER}}}}

\tt{Given\:that:}

\sf\red{(x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x)=0}

\sf\blue{by\:using\:the\:property:}

\sf\blue{(a-b)(a+b)=a^2-b^2}

\sf{=>(x-y)(x+y)+(y-z)(y+z)+(z-x)(z+x)=0}

\sf{=>(x^2-y^2)+(y^2-z^2)+(z^2-x^2)=0}

\sf{=>x^2-y^2+y^2-z^2+z^2-x^2=0}

\sf\red{so\:all\:get\:cancelled}\sf{therefore\:,0=0}

\sf{LHS=RHS}

\sf\pink{Hence\:proved}

\huge\sf\purple{Hope\:it\:helps\:you}

Similar questions