X+y+xy=44 how many ordered pairs (x,y) satisfy the given condition
Answers
12 Ordered Pairs : (0, 44) , ( 2, 14) , (4 , 8) , (8 , 4) , (14 , 2) , (44 , 0) (-2 , - 46) , (-4 , -16) , (-6 , -10) , (-10 , 6) , (16 , -4) , (-46 , -2) satisfies x + y + xy = 44
Step-by-step explanation:
x + y + xy = 44
=> x + y(1 + x) = 44
=> y(1 + x) = 44 - x
=> y = (44 - x)/(1 + x)
=> y = (45 - 1 - x)/(1 + x)
=> y = (45 - (1+ x) ) /(1 + x)
=> y = 45/(1 + x) - 1
y would be integer for 1 + x Being factor of 45
1+ x can be 1 , 3 , 5 , 9 , 15 , 45
x = 0 , x = 2 , x = 4 , x = 8 , x = 14 , x = 44
y = 44 y = 14 , y = 8 , y = 4 , y = 2 , y = 0
Ordered Pairs :
(0, 44) , ( 2, 14) , (4 , 8) , (8 , 4) , (14 , 2) , (44 , 0)
Considering - Ve values also
1+ x can be -1 , -3 , -5 , -9 , -15 , -45
x can be -2 , - 4 , - 6 , - 10 , - 16 , - 46
y -46 , -16 , -10 , - 6 , -4 , - 2
Ordered pairs
(-2 , - 46) , (-4 , -16) , (-6 , -10) , (-10 , 6) , (16 , -4) , (-46 , -2)
Total Ordered Pairs = 12
Learn More:
How many ordered pairs of (m,n) integers satisfy m/12=12/m ...
https://brainly.in/question/13213839