Math, asked by Debdas1583, 11 months ago

X+y+xy=44 how many ordered pairs (x,y) satisfy the given condition

Answers

Answered by amitnrw
1

12 Ordered Pairs : (0, 44) , ( 2, 14) , (4 , 8) , (8 , 4) , (14 , 2) , (44 , 0) (-2 , - 46) , (-4 , -16) , (-6 , -10) , (-10 , 6) , (16 , -4) , (-46 , -2) satisfies x + y  + xy  = 44

Step-by-step explanation:

x + y  + xy  = 44

=> x + y(1 + x) = 44

=> y(1 + x) = 44 - x

=> y = (44 - x)/(1 + x)

=> y  = (45 - 1 - x)/(1 + x)

=> y  = (45 - (1+ x) ) /(1  + x)

=> y = 45/(1 + x)  - 1

y would be integer for 1 + x Being factor of 45

1+ x can be  1 , 3 , 5 , 9 , 15 , 45

x = 0 ,  x = 2  , x = 4  ,  x = 8  , x = 14 , x = 44

y = 44  y = 14 , y = 8  ,  y = 4  , y = 2 ,   y = 0

Ordered Pairs :

(0, 44) , ( 2, 14) , (4 , 8) , (8 , 4) , (14 , 2) , (44 , 0)

Considering - Ve values also

1+ x can be  -1 , -3 , -5 , -9 , -15 , -45

x can be  -2 , - 4 , - 6  , - 10 , - 16 , - 46

y              -46 , -16 , -10  , - 6  , -4  , - 2

Ordered pairs

(-2 , - 46) , (-4 , -16) , (-6 , -10) , (-10 , 6) , (16 , -4) , (-46 , -2)

Total Ordered Pairs = 12

Learn More:

How many ordered pairs of (m,n) integers satisfy m/12=12/m ...

https://brainly.in/question/13213839

Similar questions