Math, asked by RaghuveerMarndi, 11 months ago

x^y + y^x+x^x = 2 Find dy/dx​

Answers

Answered by Anonymous
28

Question:

 {x}^{y}  +  {y}^{x}  +  {x}^{x}  = 2

Answer:

putting \:  {x}^{y}  = u \:  \:   {y}^{x}  = v \:  \:  {x}^{x}  = w \\  we \: get \\ u + v + w = 2 \\  \\

differentiate w.r.t.x

 \frac{du}{dx}  +  \frac{dv}{dx}  +  \frac{dw}{dx}  = 0 \\  \\ now \: u =  {x}^{y}  \\  \\ taking \: log \: on \: both \: side \\  \\ log \: u =  \: log {x}^{y}   \implies \: logu = ylogx \\  \\ diff \: w.r.t.x \\  \\  \implies \frac{1}{u} . \frac{du}{dx}  = y. \frac{1}{x}   + logx \:  \frac{dy}{dx}  \\  \\  \implies \frac{du}{dx}  = u( \frac{y}{x}  + logx \frac{dy}{dx} ) \\  \\  \implies \frac{du}{dx}  =  {x}^{y} ( \frac{y}{x}  + logx \frac{dy}{dx} )..............(2)

Taking logs

logv = log {y}^{x}  \\  \\  \implies \: logv = xlogy \\  \\ diff \: w.r.t.x \\  \\  \implies \frac{1}{v}  \frac{dv}{dx}  = x \frac{ 1}{y}  \frac{dy}{dx}  + logy.1 \\  \\  \implies \:  \frac{dv}{dx}  = v( \frac{x}{y}  \frac{dy}{dx}  + logy) \\  \\  \implies  \:  \frac{dv}{dx}  = {y}^{x} ( \frac{x}{y}  \frac{dy}{dx}  + logy)........(3)

Lastly

w =  {x}^{x}  \\  \\  \therefore \:  \frac{dw}{dx}  =  {x}^{x} (1 + logx).........(4)

from 1. using (1),(2),(3) we get......

 {x}^{y}  (\frac{y}{x}  + logx \frac{dy}{dx} ) +  {y}^{x} ( \frac{x}{y} \frac{dy}{dx}  + logy) +  {x}^{x} 1 + logx) = 0 \\  \\  \implies \:( xy ^{x - y}  +  {x}^{y} logx) \frac{dy}{dx}  =  -  {x}^{x} (1 + logx) - y {x}^{y - 1}  -  {y}^{x} logy \\  \\ hence \\  \\  \frac{dy}{dx}  =  -  \frac{ {y}^{x}logy + y. {x}^{y - 1} +  {x}^{x}  (1 + logx) }{x( {y}^{x - 1}  +  {x}^{y - 1}logx }

Similar questions