Math, asked by alberteinstien7651, 9 months ago

x/y+y/z=-1 where x,y not equal 0 then the value of (x at rate 3-y at rate3 is

Answers

Answered by Anonymous
5

Correct Question :

›»› x/y + y/x = -1 where x, y not equal 0 then the value of x³ - y³ is?

⠀⠀━━━━━━━━━━━━

Answer :

›»› The value of x³ - y³ = 0

Given :

  • \sf{ \dfrac{x}{y} + \dfrac{y}{x} = - 1}

To Find :

  • The value of x³ - y³ = ?

Required Solution :

\tt{:\implies \dfrac{x}{y} + \dfrac{y}{x} = - 1}\\

\tt{:\implies \dfrac{x \times x}{x \times y} + \dfrac{y \times y}{y \times x} = - 1}\\

\tt{:\implies \dfrac{ {x}^{2} }{xy} + \dfrac{ {y}^{2} }{xy} = - 1}\\

\tt{:\implies \dfrac{ {x}^{2} + {y}^{2} }{xy} = - 1}\\

\tt{:\implies {x}^{2} + {y}^{2} = - xy}\\

\tt{:\implies {x}^{2} + {y}^{2} + xy = 0}\\

Now ,

We know that

\tt{:\implies {x}^{3} - {y}^{3} = (x - y)( {x}^{2} \times xy + {y}^{2} )}\\

\tt{:\implies {x}^{3} - {y}^{3} = (x - y)( {x}^{2} + {y}^{2} \times xy)}\\

\tt{:\implies {x}^{3} - {y}^{3} = (x - y)( - \cancel{x}y + \cancel{x}y)}\\

\tt{:\implies {x}^{3} - {y}^{3} =(x - y)(0)} \\

 \bf{:\implies \underline{ \: \: \underline{ \red{ \: \: {x}^{3} - {y}^{3} = 0 \: \: }} \: \: }}\\

Hence, the value of x³ - y³ is 0.

Answered by Anonymous
6

Answer:

Given that:

 \frac{x}{y}  +  \frac{y}{z}  =  - 1

where x and y is not equal to 0.

To find:

x^3 – y^3

We know that,

 {x}^{3}  -  {y}^{3}   \\ = (x - y)( {x}^{2}  + xy +  {y}^{2})

 =  >  \frac{x}{y}  +  \frac{y}{z}  =  - 1 \\  \\  =  >  \frac{ {x}^{2} +  {y}^{2}   }{xy}  =  - 1 \\  \\

Now after cross multiplying it, we get

 {x}^{2}  +  {y}^{2}  =  - xy \\  \\  =  >  {x}^{2}  + xy +  {y}^{2}  = 0 \\  \\

Therefore,

 {x}^{3}  -  {y}^{3}   \\  \\ = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\   \\ = x - y \\  \\  = 0

Hence, x^3 – y^3 = 0.

Similar questions