Math, asked by siddharth5621, 10 months ago

x+y+z=1, 2x+3y+2z=2 and ax+ay+2az=4 solve the equation by the method of inversion​

Answers

Answered by MaheswariS
12

\textbf{Given:}

x+y+z=1,\;2x+3y+2z=2,\;ax+ay+2az=4

\textbf{To find:}

\text{The values of x,y and z by matrix inversion method}

\textbf{Solution:}

\text{The given system of equations can be written as}

\left[\begin{array}{ccc}1&1&1\\2&3&2\\a&a&2a\end{array}\right]\left[\begin{array}{c}x\\y\\z\end{array}\right]=\left[\begin{array}{c}1\\2\\4\end{array}\right]

\text{This is of the form}\;AX=B

\text{Here}

A=\left[\begin{array}{ccc}1&1&1\\2&3&2\\a&a&2a\end{array}\right]

|A|=1(6a-2a)-1(4a-2a)+1(2a-3a)

|A|=4a-2a-a

|A|=a

\text{Cofactor matrix of A is}

\left[\begin{array}{ccc}4a&-2a&-a\\-a&a&0\\-1&1&0\end{array}\right]

\text{Adjoint of matrix A = Transpose of cofactor matrix of A}

\text{Then}

adj\,A=\left[\begin{array}{ccc}4a&-a&-1\\-2a&a&0\\-a&0&1\end{array}\right]

A^{-1}=\frac{1}{|A|}(adjA)

A^{-1}=\frac{1}{a}\left[\begin{array}{ccc}4a&-a&-1\\-2a&a&0\\-a&0&1\end{array}\right]

\text{Now,}

X=A^{-1}B

X=\frac{1}{a}\left[\begin{array}{ccc}4a&-a&-1\\-2a&a&0\\-a&0&1\end{array}\right]\left[\begin{array}{c}1\\2\\4\end{array}\right]

X=\frac{1}{a}\left[\begin{array}{c}4a-2a-4\\-2a+2a+0\\-a+0+4\end{array}\right]

X=\frac{1}{a}\left[\begin{array}{c}2a-4\\0\\4-a\end{array}\right]

X=\left[\begin{array}{c}\frac{2a-4}{a}\\0\\\frac{4-a}{a}\end{array}\right]

\therefore\textbf{The solution is}

\bf\,x=\frac{2a-4}{a}

\bf\,y=0

\bf\,z=\frac{4-a}{a}

Find more:

Solve the following system of linear equations using Inverse Matrix Method. 

x + 6y – z = 10

2x + 3y + 3z = 17

3x - 3y – 2z = -9

https://brainly.in/question/16281483

Similar questions