Math, asked by neelamyogi99, 5 months ago

x-y-z=1, 2x+y+z=2, x-2y+z=4​

Answers

Answered by gnanasekareie
1

Answer:

the answer for this question is

X=1

y=-1

z=1

Answered by brokendreams
0

The solution of the system of linear equations is x = 1, y = -1, and z = 1.

Step-by-step explanation:

Given: Linear equations, x-y-z=1, \ 2x+y+z=2, \ \text{and} \ x-2y+z=4

To Find: Solution of the systems of linear equations

Solution:

  • Solution of the system of linear equations

The linear equations are x-y-z=1, \ 2x+y+z=2, \ \text{and} \ x-2y+z=4 such that they can be written in the form of matrix AX = B. Therefore, we can write,

\left[\begin{array}{ccc}1&-1&-1\\2&1&1\\1&-2&1\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\2\\4\end{array}\right]

Using the matrix operation R_3 \rightarrow R_3 - R_1

\Rightarrow \left[\begin{array}{ccc}1&-1&-1\\2&1&1\\0&-1&2\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\2\\3\end{array}\right]

Using the matrix operation R_2 \rightarrow R_2 - 2R_1

\Rightarrow \left[\begin{array}{ccc}1&-1&-1\\0&3&3\\0&-1&2\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\0\\3\end{array}\right]

Using the matrix operation R_2 \rightarrow R_2/3

\Rightarrow \left[\begin{array}{ccc}1&-1&-1\\0&1&1\\0&-1&2\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\0\\3\end{array}\right]

Using the matrix operation R_3 \rightarrow R_3 + R_2

\Rightarrow \left[\begin{array}{ccc}1&-1&-1\\0&1&1\\0&0&3\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\0\\3\end{array}\right]

Using the matrix operation R_3 \rightarrow R_3/3

\Rightarrow \left[\begin{array}{ccc}1&-1&-1\\0&1&1\\0&0&1\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\0\\1\end{array}\right]

Using the matrix operation R_1 \rightarrow R_1 + R_2

\Rightarrow \left[\begin{array}{ccc}1&0&0\\0&1&1\\0&0&1\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\0\\1\end{array}\right]

Using the matrix operation R_2 \rightarrow R_2 - R_3

\Rightarrow \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\-1\\1\end{array}\right]

Since the matrix \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] is the identity matrix (I), therefore,

\Rightarrow \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}1\\-1\\1\end{array}\right]

Hence, the solution of the system of linear equations is x = 1, y = -1, and z = 1.

Similar questions