x+y+z=1 then find value 1-3x^2-3y^2-3z^3+2x^3+2y^3+2z^3
Answers
Answered by
21
HELLO DEAR,
given that:-
(x + y + z ) = 1-------------(1)
1 - 3x² - 3y² - 3z² + 2x³ + 2y³ + 2z³
=> 1 - 3x² - 3y² - 3z² + 2[(x³ + y³ +z³) ]
=> 1 - 3x² - 3y² - 3z² + 2[(x+y+z)(x²+y²+z² - xy - yz - zx) + 3xyz]-------from (1)
=> 1 - 3x² - 3y² - 3z² + 2[(1)(x²+y²+z² - xy - yz - zx) + 3xyz]
=> 1 - 3x² - 3y² - 3z² + 2x² + 2y² + 2z² - 2xy - 2yz - 2zx + 6xyz]
=> 1 - x² - y² - z² - 2xy - 2yz - 2zx + 6xyz
=> 1 - (x² + y² +z² + 2xy + 2yz + 2zx) + 6xyz
=> 1 - (x+y+z)² + 6xyz---------from(1)
=> 1 - 1 + 6xyz
=> 6xyz
I HOPE ITS HELP YOU DEAR,
THANKS
given that:-
(x + y + z ) = 1-------------(1)
1 - 3x² - 3y² - 3z² + 2x³ + 2y³ + 2z³
=> 1 - 3x² - 3y² - 3z² + 2[(x³ + y³ +z³) ]
=> 1 - 3x² - 3y² - 3z² + 2[(x+y+z)(x²+y²+z² - xy - yz - zx) + 3xyz]-------from (1)
=> 1 - 3x² - 3y² - 3z² + 2[(1)(x²+y²+z² - xy - yz - zx) + 3xyz]
=> 1 - 3x² - 3y² - 3z² + 2x² + 2y² + 2z² - 2xy - 2yz - 2zx + 6xyz]
=> 1 - x² - y² - z² - 2xy - 2yz - 2zx + 6xyz
=> 1 - (x² + y² +z² + 2xy + 2yz + 2zx) + 6xyz
=> 1 - (x+y+z)² + 6xyz---------from(1)
=> 1 - 1 + 6xyz
=> 6xyz
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions