Math, asked by anabiyakouser65680, 9 months ago

x+y+z= 15
if a, x, y, z, b are in Ap
1/x+1/y + 1/z =5/3 if a,x,y,z,b are in hp​

Answers

Answered by lalneel2009
0

Answer:

okay okay okayokay okay okayokay okay okayokay okay okay

Answered by aasthamaurya4jul2012
0

Answer:

To find the value of a and b  

Given,

x+y+z=15....(i)

x

1

​  

+  

y

1

​  

+  

z

1

​  

=  

3

5

​  

........(ii)

if a,x,y,z are in A.P

Then, x,y,z are in A.P

∴2y=x+z......(iii)

⇒2y+y=15........... comparing (iii) and (i)

⇒3y=15⇒  

y=5

​  

 

Now,

2

a+b

​  

=y⇒a+b=2y

           ⇒a+b=10......(vi)

Now, if a,x,y,z are in HP

then x,y,z one in H.P

∴  

y

2

​  

=  

x

1

​  

+  

z

1

​  

.......(iv)

⇒  

x

1

​  

+  

y

1

​  

+  

z

1

​  

=  

3

5

​  

.......(v)

from (iv) and (v) we can write

y

2

​  

+  

y

1

​  

=  

3

5

​  

=  

3

5

​  

........putting (iv) in (v)

y

3

​  

=  

3

5

​  

⇒  

y=  

5

9

​  

 

​  

 

Also, a,y,b are in H.P.

a

1

​  

+  

b

1

​  

=  

y

2

​  

 

⇒  

ab

a+b

​  

=  

y

−2

​  

=  

9

2×5

​  

 

⇒  

ab

a+b

​  

=  

9

10

​  

 

​  

......(vi)

by comparing (vi) and (vii) we can say that

ab

a+b

​  

=  

9

10

​  

 

⇒  

ab

10

​  

=  

9

10

​  

 

⇒  

ab=9

​  

.......(viii)

⇒a(10−a)=9

⇒10a−a  

2

=9⇒a  

2

−10a+9=0

                    ⇒(a−1)(a−9)=0

                    ∴a=1 or 9

To find the value of a and b  

Given,

x+y+z=15....(i)

x

1

​  

+  

y

1

​  

+  

z

1

​  

=  

3

5

​  

........(ii)

if a,x,y,z are in A.P

Then, x,y,z are in A.P

∴2y=x+z......(iii)

⇒2y+y=15........... comparing (iii) and (i)

⇒3y=15⇒  

y=5

​  

 

Now,

2

a+b

​  

=y⇒a+b=2y

           ⇒a+b=10......(vi)

Now, if a,x,y,z are in HP

then x,y,z one in H.P

∴  

y

2

​  

=  

x

1

​  

+  

z

1

​  

.......(iv)

⇒  

x

1

​  

+  

y

1

​  

+  

z

1

​  

=  

3

5

​  

.......(v)

from (iv) and (v) we can write

y

2

​  

+  

y

1

​  

=  

3

5

​  

=  

3

5

​  

........putting (iv) in (v)

y

3

​  

=  

3

5

​  

⇒  

y=  

5

9

​  

 

​  

 

Also, a,y,b are in H.P.

a

1

​  

+  

b

1

​  

=  

y

2

​  

 

⇒  

ab

a+b

​  

=  

y

−2

​  

=  

9

2×5

​  

 

⇒  

ab

a+b

​  

=  

9

10

​  

 

​  

......(vi)

by comparing (vi) and (vii) we can say that

ab

a+b

​  

=  

9

10

​  

 

⇒  

ab

10

​  

=  

9

10

​  

 

⇒  

ab=9

​  

.......(viii)

⇒a(10−a)=9

⇒10a−a  

2

=9⇒a  

2

−10a+9=0

                    ⇒(a−1)(a−9)=0

                    ∴a=1 or 9

∴ when a=1,b=9

              a=9,b=1

∴  

a×b=9×1=1×9=9

​  

           

       

∴ when a=1,b=9

              a=9,b=1

∴  

a×b=9×1=1×9=9

​  

           

       

Step-by-step explanation:

The value of x+y+z=15, if a,x,y,z,b are in A.P, while the value of  

x

1

​  

+  

y

1

​  

+  

z

1

​  

=  

3

5

​  

 if a,x,y,z,b are in H.P. Find a× b.

Similar questions