X+Y+Z=15, XY+YZ+ZX=71 and XYZ=10 then x3+y3+z3= ?
Answers
Answered by
28
Hey there !!
➡ Given :-
→ x + y + z = 15.
→ xy + yz + zx = 71.
→ xyz = 10.
➡ To find :-
→ x³ + y³ + z³ .
▶ Solution :-
We have,
x + y + z = 15.
[ Squaring both side ].
=> ( x + y + z )² = ( 15 )² .
=> x² + y² + z² +2( xy + yz + zx ) = 225.
=> x² + y² + z² + 2( 71 ) = 225.
=> x² + y² + z² + 142 = 225.
=> x² + y² + z² = 225 - 142.
•°• x² + y²+ z² = 83.
▶Now, using Identity :-
→ x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - ( xy + yz + zx ) .
=> x³ + y³ + z³ - 3( 10 ) = ( 15 )( 83 - ( 71 ) ).
=> x³ + y³ + z³ - 30 = 15 × ( 83 - 71 ) .
=> x³ + y³ + z³ - 30 = 15 × 12.
=> x³ + y³ + z³ = 180 + 30 .
•°• x³ + y³ + z³ = 210.
✔✔ Hence, it is solved ✅✅.
➡ Given :-
→ x + y + z = 15.
→ xy + yz + zx = 71.
→ xyz = 10.
➡ To find :-
→ x³ + y³ + z³ .
▶ Solution :-
We have,
x + y + z = 15.
[ Squaring both side ].
=> ( x + y + z )² = ( 15 )² .
=> x² + y² + z² +2( xy + yz + zx ) = 225.
=> x² + y² + z² + 2( 71 ) = 225.
=> x² + y² + z² + 142 = 225.
=> x² + y² + z² = 225 - 142.
•°• x² + y²+ z² = 83.
▶Now, using Identity :-
→ x³ + y³ + z³ - 3xyz = ( x + y + z )( x² + y² + z² - ( xy + yz + zx ) .
=> x³ + y³ + z³ - 3( 10 ) = ( 15 )( 83 - ( 71 ) ).
=> x³ + y³ + z³ - 30 = 15 × ( 83 - 71 ) .
=> x³ + y³ + z³ - 30 = 15 × 12.
=> x³ + y³ + z³ = 180 + 30 .
•°• x³ + y³ + z³ = 210.
✔✔ Hence, it is solved ✅✅.
Answered by
7
====================================
If x + y + z = 15, xy + yz + zx = 71 and xyz = 10, then find the value of x³ + y³ + z³.
We will use the following identity to solve the question -
x³ + y³ + z³ - 3xyz = (x+y+z)(x²+y²+z²-xy-yz-zx
__________________
Then, we have to find the value of x² + y² + z² at first.
x+y+z = 15 [given]
Squaring both sides -
(x+y+z)² = (15)²
Now, using identity (a+b+c)² = a²+b²+c²+2ab+2bc+2ca, we get
=> x² + y² + z² + 2xy + 2yz + 2zx = 225
=> x² + y² + z² + 2(xy + yz + zx) = 225
=> x² + y² + z² + 2(71) = 225
=> x² + y² + z² = 225 - (2×71)
=> x² + y² + z² = 225 - 142
=> x² + y² + z² = 83
____________________
Now, we know that
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
So,
x³+y³+z³ - 3xyz = (x+y+z)(x²+y²+ z²-xy-yz-zx)
=> x³+y³+z³-3xyz = (x+y+z)(x²+y²+z²-(xy+yz+zx)
=> x³+y³+z³ - 3(10) = (15){83-(71)}
=> x³+y³+z³ - 30 = 15 × (83-71)
=> x³ + y³ + z³ - 30 = 15 × 12
=> x³+y³+z³-30 = 180
=> x³+y³+z³ = 180+30
=> x³ + y³ + z³ = 210
====================================
Thank you.. ;-)
Anonymous:
ur answer is wrong
Similar questions
Chemistry,
7 months ago
Chemistry,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago
Math,
1 year ago