CBSE BOARD XII, asked by kumaraakash1042, 1 year ago

X+y+z=19 xyz=216 xy+yz+zx=114 √x^3+y^3+z^3+xyz

Answers

Answered by hukam0685
8

Answer:

\sqrt{{x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz}   = 25.59 \\

Explanation:

As we know that

 {x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz = (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz) \\  \\

To find the value of

 \sqrt{ {x}^{3} +  {y}^{3}   +  {z}^{3} + xyz }  \\

Add 4xyz in both side of the formula

{x}^{3}  +  {y}^{3}  +  {z}^{3}  - 3xyz + 4xyz =4xyz +  (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz) \\  \\ {x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz =4xyz +  (x + y + z)( {x}^{2}  +  {y}^{2}  +  {z}^{2}  - xy - yz - xz) \\  \\  \\

We don't have the value of

 {x}^{2}  +  {y}^{2}  +  {z}^{2}  \\

for that square both sides

x + y + z = 19 \\  \\  {(x + y + z)}^{2}  = 361 \\  \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  + 2xy + 2yz + 2zx = 361 \\  \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  = 361 - 2(xy + yz + zx) \\  \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  = 361 - 2(114) \\  \\  {x}^{2}  +  {y}^{2}  +  {z}^{2}  = 133 \\  \\

Now place all the values

{x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz =4(216) +  (19)( 133- 144) \\  \\ {x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz= 864 - 209 \\  \\ {x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz = 655 \\  \\

Now,take square root both sides

 \sqrt{{x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz}  =  \sqrt{655}  \\  \\  \sqrt{{x}^{3}  +  {y}^{3}  +  {z}^{3}  + xyz}   = 25.59 \\  \\

Hope it helps you.

Similar questions