(x+y+z)^2 + (x+y+z)^2
Answers
Answered by
0
Answer:
2(x+y+z)²
Step-by-step explanation:
(x+y+z)²+(x+y+z)²
2(x+y+z)²
Answered by
13
Given :
→ (x + y + z)² + (x + y + z)²
Identity to use :
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Solution :
→ (x + y + z)² + (x + y + z)²
where,
- a = x
- b = y
- c = z
Method 1 :
(x + y + z)² + (x + y + z)²
= 2(x + y + z)²
Applying the identity,
= 2[(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)]
= 2[x² + y² + z² + 2xy + 2yz + 2zx]
→ 2x² + 2y² + 2z² + 4xy + 4yz + 4zx
Method 2 :
(x + y + z)² + (x + y + z)²
Applying identity,
= [(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)] + [(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)]
= (x² + y² + z² + 2xy + 2yz + 2zx) + (x² + y² + z² + 2xy + 2yz + 2zx
= x² + y² + z² + 2xy + 2yz + 2zx + x² + y² + z² + 2xy + 2yz + 2zx
→ 2x² + 2y² + 2z² + 4xy + 4yz + 4zx
IDENTITIES :
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (x + a)(x + b) = x² + x(a + b) + ab
- a² - b² = (a + b)(a - b)
- (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
- (a + b)³ = a³ + 3a²b + 3ab² + b³ → a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3a²b + 3ab² - b³ → a³ - 3ab(a - b) + b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
- a³ + b³ + c³ = 3abc if a + b + c = 0
ImperialGladiator:
Awesome! ✨
Similar questions
Math,
9 days ago
Social Sciences,
18 days ago
History,
18 days ago
English,
9 months ago
World Languages,
9 months ago