Math, asked by mehndikhan321, 18 days ago

(x+y+z)^2 + (x+y+z)^2

Answers

Answered by vikkiain
0

Answer:

2(x+y+z)²

Step-by-step explanation:

(x+y+z)²+(x+y+z)²

2(x+y+z)²

Answered by Dinosaurs1842
13

Given :

→ (x + y + z)² + (x + y + z)²

Identity to use :

(a + b + c)² = + + + 2ab + 2bc + 2ca

Solution :

(x + y + z)² + (x + y + z)²

where,

  • a = x
  • b = y
  • c = z

Method 1 :

(x + y + z)² + (x + y + z)²

= 2(x + y + z)²

Applying the identity,

= 2[(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)]

= 2[x² + y² + z² + 2xy + 2yz + 2zx]

→ 2x² + 2y² + 2z² + 4xy + 4yz + 4zx

Method 2 :

(x + y + z)² + (x + y + z)²

Applying identity,

= [(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)] + [(x)² + (y)² + (z)² + 2(x)(y) + 2(y)(z) + 2(z)(x)]

= (x² + y² + z² + 2xy + 2yz + 2zx) + (x² + y² + z² + 2xy + 2yz + 2zx

= x² + y² + z² + 2xy + 2yz + 2zx + x² + y² + z² + 2xy + 2yz + 2zx

→ 2x² + 2y² + 2z² + 4xy + 4yz + 4zx

IDENTITIES :

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • (x + a)(x + b) = x² + x(a + b) + ab
  • a² - b² = (a + b)(a - b)
  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
  • (a + b)³ = a³ + 3a²b + 3ab² + b³ → a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3a²b + 3ab² - b³ → a³ - 3ab(a - b) + b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
  • a³ + b³ + c³ = 3abc if a + b + c = 0

ImperialGladiator: Awesome! ✨
Aryan0123: Perfect!
Similar questions