x+y+z=2, xy+yz+zx=1, (x+y)^2 +(y+z)^2 +( z+x)^2 =?
Answers
Answered by
1
Answer:
6
Step-by-step explanation:
Given :
x + y + z = 2,
xy + yz + zx = 1,
Then, (x + y)² + (y + z)² + (z + x)² = ?
Solution :
We know that,
x + y + z = 2
⇒ (x + y + z) = (2)²
⇒ x² + y² + z² + 2xy + 2yz + 2zx = 4
⇒ x² + y² + z² + 2(xy + yz + zx) = 4
⇒ x² + y² + z² + 2(1) = 4
⇒ x² + y² + z² + 2 = 4
⇒ x² + y² + z² = 4 - 2 = 2
⇒ x² + y² + z² = 2 ...(i)
Now,
(x + y)² + (y + z)² + (z + x)²
⇒ (x² + 2xy + y²) + (y² + 2yz + z²) + (z² + 2zx + x²)
⇒ 2x² + 2y² + 2z² + 2xy + 2yz + 2zx
⇒ 2(x² + y² + z²) + 2(xy + yz + zx)
⇒ 2(2) + 2(1) = 4 + 2 = 6
Similar questions