Math, asked by rkrahul, 1 year ago

x+y+z=6 and xy+yz+zx=9 and xyz=1 then what is the value of (1/1-x)+(1/1-y)+(1/1-z)

Answers

Answered by Anonymous
10
Expanding, 
   { (1- x)(1-y) + (1-y)(1-z) + (1-z)(1-x) } / (1-x)(1-y)(1-z)
= { 1 - x - y + xy + 1 - y - z + yz - 1 - z - x + xz } / { ( 1 - x - y + xy )(1-z)
= { 3 - 2(x+y+z) + (xy + yz + zx) } / { 1 - x - y- z + xy + yz + xz - xyz }
= { 3 - 2*6 + 9 } / { 1 - 6 +9 -1 }
= (12 - 12) / 3 = 0 

There you go

naik3: super
Anonymous: thx
Answered by hukam0685
6

Answer:

<strong> </strong>\frac{1}{1 - x}  +  \frac{1}{1 - y}  +  \frac{1}{1 - z} =0\\

Step-by-step explanation:

To solve

 \frac{1}{1 - x}  +  \frac{1}{1 - y}  +  \frac{1}{1 - z}  \\

if

x + y + z = 6 \\  \\ xy + yz + xz = 9 \\  \\ xyz = 1 \\  \\

first take LCM

 \frac{(1 - y)(1 - z) + (1 -x )(1 - z) + (1 - x)(1 - y)}{(1 - x)(1 - y)(1 - z)}  \\  \\  =  &gt;  \frac{1 - z - y + yz + 1 - z - x + xz + 1 - y - x + xy}{(1 - x - y + xy)(1 - z)}  \\  \\  =  \frac{3 - 2x - 2y - 2z + xy + yz + xz}{1 -  z - x + xz - y + yz + xy - xyz}  \\  \\  \frac{3 - 2(x + y + z) + xy + yz + zx}{1 - (x  + y  + z) + xy + yz + xz - xyz }  \\  \\ place \: all \: the \: values \: we \: have \\  \\  =  \frac{3 - 2(6) + 9}{1 - (6) + 9 - 1}  \\  \\  =  \frac{3 - 12 + 9}{ - 6 + 9}  \\  \\  =  \frac{ 0}{3}  \\  \\=0

Hope it helps you.

Similar questions