x+y+z=6 and xy+yz+zx=9 and xyz=1 then what is the value of (1/1-x)+(1/1-y)+(1/1-z)
Answers
Answered by
10
Expanding,
{ (1- x)(1-y) + (1-y)(1-z) + (1-z)(1-x) } / (1-x)(1-y)(1-z)
= { 1 - x - y + xy + 1 - y - z + yz - 1 - z - x + xz } / { ( 1 - x - y + xy )(1-z)
= { 3 - 2(x+y+z) + (xy + yz + zx) } / { 1 - x - y- z + xy + yz + xz - xyz }
= { 3 - 2*6 + 9 } / { 1 - 6 +9 -1 }
= (12 - 12) / 3 = 0
There you go
{ (1- x)(1-y) + (1-y)(1-z) + (1-z)(1-x) } / (1-x)(1-y)(1-z)
= { 1 - x - y + xy + 1 - y - z + yz - 1 - z - x + xz } / { ( 1 - x - y + xy )(1-z)
= { 3 - 2(x+y+z) + (xy + yz + zx) } / { 1 - x - y- z + xy + yz + xz - xyz }
= { 3 - 2*6 + 9 } / { 1 - 6 +9 -1 }
= (12 - 12) / 3 = 0
There you go
naik3:
super
Answered by
6
Answer:
Step-by-step explanation:
To solve
if
first take LCM
Hope it helps you.
Similar questions