X+y+z= 6 ; x+y+z = 2 ; x+2y - z= 2 solve by cramers rule
Answers
Step-by-step explanation:
Answer
We have,
x+y+z=6,x−y+z=2,2x+y−z=1
Thus A=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
X=
∣
∣
∣
∣
∣
∣
∣
∣
x
y
z
∣
∣
∣
∣
∣
∣
∣
∣
,B=
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
∣
∣
∣
∣
∣
∣
∣
∣
Now Solve A to get A=6
Now x=
A
A
x
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
6
=1
y=
A
A
y
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
6
2
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
12
=2
z=
A
A
z
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
6
2
1
∣
∣
∣
∣
∣
∣
∣
∣
=
6Answer
We have,
x+y+z=6,x−y+z=2,2x+y−z=1
Thus A=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
X=
∣
∣
∣
∣
∣
∣
∣
∣
x
y
z
∣
∣
∣
∣
∣
∣
∣
∣
,B=
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
∣
∣
∣
∣
∣
∣
∣
∣
Now Solve A to get A=6
Now x=
A
A
x
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
6
=1
y=
A
A
y
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
6
2
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
12
=2
z=
A
A
z
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
6
2
1
∣
∣Answer
We have,
x+y+z=6,x−y+z=2,2x+y−z=1
Thus A=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
X=
∣
∣
∣
∣
∣
∣
∣
∣
x
y
z
∣
∣
∣
∣
∣
∣
∣
∣
,B=
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
∣
∣
∣
∣
∣
∣
∣
∣
Now Solve A to get A=6
Now x=
A
A
x
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
6
2
1
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
6
=1
y=
A
A
y
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
6
2
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
=
6
12
=2
z=
A
A
z
=
∣
∣
∣
∣
∣
∣
∣
∣
1
1
2
1
−1
1
1
1
−1
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
=
6
18
=3
18
=3
Hope it helps you...
....