Math, asked by priyanka1783, 1 year ago

x+y+z=6 ,x-y+z =2 ,x+2y-z=2 solve the following using cramers rule​

Answers

Answered by MaheswariS
49

\underline{\textsf{Given:}}

\textsf{Equations are}

\mathsf{x+y+z=6,\;x-y=z=2,\;x+2y-z=2}

\underline{\textsf{To find:}}

\textsf{Solution by Cramer's rule}

\underline{\textsf{Solution:}}

\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\1&-1&1\\1&2&-1\end{array}\right|}

\mathsf{\triangle=1(1-2)-1(-1-1)+1(2+1)}

\mathsf{\triangle=-1+2+3=4}

\mathsf{{\triangle}_x=\left|\begin{array}{ccc}6&1&1\\2&-1&1\\2&2&-1\end{array}\right|}

\mathsf{{\triangle}_x=6(1-2)-1(-2-2)+1(4+2)}

\mathsf{{\triangle}_x=-6+4+6=4}

\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&6&1\\1&2&1\\1&2&-1\end{array}\right|}

\mathsf{{\triangle}_y=1(-2-2)-6(-1-1)+1(2-2)}

\mathsf{{\triangle}_y=-4+12+0=8}

\mathsf{{\triangle}_z=\left|\begin{array}{ccc}1&1&6\\1&-1&2\\1&2&\end{array}\right|}

\mathsf{{\triangle}_z=1(-2-4)-1(2-2)+6(2+1)}

\mathsf{{\triangle}=-6+18=12}

\textsf{By cramer's rule}

\mathsf{x=\dfrac{\triangle_x}{\triangle}=\dfrac{4}{4}=1}

\mathsf{y=\dfrac{\triangle_y}{\triangle}=\dfrac{8}{4}=2}

\mathsf{z=\dfrac{\triangle_z}{\triangle}=\dfrac{12}{4}=3}

\therefore\textsf{The solution is (x,y,z)=(1,2,3)}

Answered by palakk81
12

x, y, z

1,2,3

hope it will help you

Similar questions