Math, asked by krishna4045, 1 year ago

X+y+z=6, xy+yz+zx=10, find x^3+ y^3+z^3=3xyz

Answers

Answered by Tanu1572004
1

Answer:

x^{3}+y^{3}+z^{3}-3xyz=(x+y+z) (x^{2}+y^{2}+z^{2}+xy+yz+xz) \\  = 6 \times  (x^{2}+y^{2}+z^{2} + 10)

we need to find x^2+y^2+z^2

 (x + y + z)^{2} = x^{2}+y^{2} +  z^{2} + 2(xy +zy+xz) \\  {6}^{2}  = x^{2}+y^{2}+z^{2} + 2 \times 10 \\ 36 =x^{2}+y^{2}+z^{2}+2 \times10

x^{2}+y^{2}+z^{2}  = 36 - 20 \\ x^{2}+y^{2}+z^{2}  = 16

now put the value

x^{3}+y^{3}+z^{3}-3xyz = (x+y+z) (x^{2}+y^{2}+z^{2}+xy+yz+xz) \\ x^{3}+y^{3}+z^{3}-3xyz  = 6 \times (16 + 10) \\  x^{3}+y^{3}+z^{3}-3xyz =6 \times 160= 960

hope you like the answer...

Similar questions