Math, asked by rupdus38, 1 month ago

x+y+z=7 ; 2x+2y+z=4 ; -3x-2y+z=-4​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given equations are

\rm :\longmapsto\:x + y + z = 7 -  -  - (1)

\rm :\longmapsto\:2x + 2y + z = 4 -  -  - (2)

\rm :\longmapsto\:3x  - 2y + z =  -  \: 4 -  -  - (3)

Now, to solve these 3 equations in 3 variables, we use method of Eliminations.

So, multiply equation (1) by 2, we get

\rm :\longmapsto\:2x + 2y + 2z = 14 -  -  - (4)

On Subtracting equation (2) from equation (4), we get

\boxed{ \rm{ \bf :\longmapsto\:z = 10 -  -  - (5)}}

On adding equation (3) and equation (2), we get

\rm :\longmapsto\:5x + 2z = 0

On substituting the value of z = 10, we get

\rm :\longmapsto\:5x + 2(10) = 0

\rm :\longmapsto\:5x + 20 = 0

\rm :\longmapsto\:5x  =  - 20

\boxed{ \rm{ \bf :\longmapsto\:x =  - \:  4 -  -  - (6)}}

On substituting the values of x and z in equation (1), we get

\rm :\longmapsto\: - 4 + y + 10 = 7

\rm :\longmapsto\:  y + 6= 7

\rm :\longmapsto\:  y= 7 - 6

\boxed{ \rm{ \bf :\longmapsto\:y =  \:1 -  -  - (7)}}

Hence,

 \red{\boxed{ \bf{ \: x =  - 4, \:  \: y = 1, \:  \: z = 10}}}

Verification :-

Consider, Equation (1)

\rm :\longmapsto\:x + y + z = 7

On substituting the values of x, y and z, we get

\rm :\longmapsto\: - 4 + 1 + 10 = 7

\rm :\longmapsto\:7 = 7

Hence, Verified

Consider, Equation (2)

\rm :\longmapsto\:2x + 2y + z = 4

On substituting the values of x, y and z, we get

\rm :\longmapsto\:2( - 4)+ 2(1) + 10 = 4

\rm :\longmapsto\: - 8 + 2 + 10 = 4

\rm :\longmapsto\:4 = 4

Hence, Verified

Consider Equation (3)

\rm :\longmapsto\:3x - 2y + z =  - 4

On substituting the values of x, y and z, we get

\rm :\longmapsto\:3( - 4) - 2(1) + 10 =  - 4

\rm :\longmapsto\: - 12 - 2 + 10 =  - 4

\rm :\longmapsto\: - 4 =  - 4

Hence, Verified

Similar questions