Math, asked by gcbag2701, 1 year ago

X+y+z=9 & xy+yz+zx=23 find x^3+y^3+z^3-3xyz

Answers

Answered by rabia6
6

Answer:

hey it's your answer.....

hope it helps u

Attachments:
Answered by Anonymous
1

Answer:

Given:\ x+y+z=8 \\ xy+yz+zx=20 \\ To \: find\: x^{3}+y^{3}+z^{3}-3xyz =?

Answer:

 x+y+z=8 --------eq 1 \\ xy+yz+zx= 20 ----eq2 \\ squaring\:both\: side \\ x^{2}+y^{2} +z^{2}+2xy+2yz +2zx \\ x^{2}+y^{2}+z^{2}+2(xy+yz +zx ) \\ x^{2}+y^{2}+z^{2}+2(20)=64 \\ x^{2}+y^{2}+z^{2}= 64-40 =24 \\by:\ eq2 \\ x^{3}+y^{3}+z^{3}-3xyz(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx) \\ x^{3}+y^{3}+ z^{3}-3xyz=8(24-20) \\ x^{3}+y^{3}+z^{3}+3xyx=8(4) \\ x^{3}+y^{3}+z^{3}-3xyz= 32 Answer.

Similar questions