X, Y, Z, are in A. P. and x, y, (z+1) are in G. P. Then
Answers
Answer:
Step-by-step explanation:
x, y, z, are in ap
Let the common difference =d
Then y - d = x -------------(1)
and y + d = z ------------(2)
x, y, (z+1) are in G. P. Then
y/x = (z + 1) / y
y^2 = x * (z + 1)
Putting value of x and z from (1) and (2) we get
y² = (y - d) * (y + d + 1)
y²= y^2 + yd + y - yd - d² - d
y² = y^2 + y - d^2 - d
0 = y - d^2 - d
y = d² + d
y=d(d+1)--------------------------(3)
Now Let's take d=1 then
y=1*2=2
From(1) and (2)
x=y-d
=2-1=1
and z=y+d
2+1=3
Therefore x=1,y=2,z=3
Then One solution
1,2,3
==========================================================
We also observe
x=y-d
=d² + d-d=d²
and z=y+d
=d² + d+d
=d² + 2d
hence the series becomes:
d²,d²+d,d²+2d.......................
Hence this is an AP with
first term d² and common difference d
hence infinite series are formed like
d=2 the AP 4,6,8,......................
d=3, then AP is 9,12,15...............
......................................................
..........................................................
...........................................