Math, asked by siddarthvajra4287, 9 hours ago

X + Y + Z is equal to 10, X square + Y square + Y square equal to 60 find X Y + Y Z + ZX

Answers

Answered by anindyaadhikari13
9

\textsf{\large{\underline{Solution}:}}

Given:

\rm:\longmapsto x + y + z = 10 - (i)

\rm:\longmapsto  {x}^{2}  +  {y}^{2} +  {z}^{2} =60

Squaring both sides of (i), we get:

\rm:\longmapsto (x + y + z)^{2}  = 10 0

\rm:\longmapsto {x}^{2}  +  {y}^{2} +  {z}^{2} + 2(xy + yz + xz)  = 100

Substitute the value of x² + y² + z², we get:

\rm:\longmapsto 60 + 2(xy + yz + xz)  = 100

\rm:\longmapsto 2(xy + yz + xz)  = 100 - 60

\rm:\longmapsto xy + yz + xz=  \dfrac{40}{2}

\rm:\longmapsto xy + yz + xz= 20

So, the value of xy + yz + xz is 20.

\textsf{\large{\underline{Answer}:}}

  • The value of xy + yz + xz is 20.

\textsf{\large{\underline{More Identities To Know}:}}

  1. (a + b)² = a² + 2ab + b²
  2. (a - b)² = a² - 2ab + b²
  3. a² - b² = (a + b)(a - b)
  4. (a + b)³ = a³ + 3ab(a + b) + b³
  5. (a - b)³ = a³ - 3ab(a - b) - b³
  6. a³ + b³ = (a + b)(a² - ab + b²)
  7. a³ - b³ = (a - b)(a² + ab + b²)
  8. (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Answered by SANDHIVA1974
1

Answer:

HEY BUDDY,

Step-by-step explanation:

[tex]\textsf{\large{\underline{Solution}:}}

Given:

\rm:\longmapsto x + y + z = 10 - (i)

\rm:\longmapsto  {x}^{2}  +  {y}^{2} +  {z}^{2} =60

Squaring both sides of (i), we get:

\rm:\longmapsto (x + y + z)^{2}  = 10 0

\rm:\longmapsto {x}^{2}  +  {y}^{2} +  {z}^{2} + 2(xy + yz + xz)  = 100

Substitute the value of x² + y² + z², we get:

\rm:\longmapsto 60 + 2(xy + yz + xz)  = 100

\rm:\longmapsto 2(xy + yz + xz)  = 100 - 60

\rm:\longmapsto xy + yz + xz=  \dfrac{40}{2}

\rm:\longmapsto xy + yz + xz= 20

★ So, the value of xy + yz + xz is 20.

\textsf{\large{\underline{Answer}:}}

The value of xy + yz + xz is 20.

\textsf{\large{\underline{More Identities To Know}:}}

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)³ = a³ + 3ab(a + b) + b³

(a - b)³ = a³ - 3ab(a - b) - b³

a³ + b³ = (a + b)(a² - ab + b²)

a³ - b³ = (a - b)(a² + ab + b²)

(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)[/tex]

Similar questions