X + y + z is equal to 9 and xy + y z + z is 2023 then the value of x cube + y cube + z cube minus 3 x y z solve
Answers
Answered by
1
Step-by-step explanation:
Given, x+y+z=8,xy+yz+zx=20
Now, x
3
+y
3
+z
3
−3xyz=(x+y+z)(x
2
+y
2
+z
2
−xy−yz−zx)
Again, (x+y+z)
2
=x
2
+y
2
+z
2
+2xy+2yz+2zx
x
2
+y
2
+z
2
=(x+y+z)
2
−2(xy+yz+zx)
x
2
+y
2
+z
2
=(8)
2
−2(20)=24
x
3
+y
3
+z
3
−3xyz=(x+y+z)[x
2
+y
2
+z
2
−(xy+yz+zx)]
x
3
+y
3
+z
3
−3xyz=(8)[24−(20)]
x
3
+y
3
+z
3
−3xyz=(8)[24−(20)]=8(4)=32
Similar questions