X + Y + Z is equal to zero, show that x cube + y cube + Z cube = 3 xyz
Answers
Answered by
9
we know that
x³ + y³ + z³ - xyz = ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
Putting x + y + z = 0 on R.H.S ., we get
x³ + y³ + z³ - 3xyz = 0
→ x³ + y³ + z³ = 3xyz
x³ + y³ + z³ - xyz = ( x + y + z ) ( x² + y² + z² - xy - yz - zx )
Putting x + y + z = 0 on R.H.S ., we get
x³ + y³ + z³ - 3xyz = 0
→ x³ + y³ + z³ = 3xyz
Answered by
3
Hello friend
----------------------------------------
We know that
x^3 + y^3 + z^3 = ( x + y + z ) ( x^2 + y^2 + z^2 -xy -yz - xz ) + 3xyz
Given x + y + z = 0
(substitute in above equation)
x^3 + y^3 + z^3 = 0 ×( x^2 + y^2 + z^2 - xy - yz - zx ) + 3xyz
x^3 + y^3 + z^3 = 3xyz
----------------------------------------
Hope it's help you :))
----------------------------------------
We know that
x^3 + y^3 + z^3 = ( x + y + z ) ( x^2 + y^2 + z^2 -xy -yz - xz ) + 3xyz
Given x + y + z = 0
(substitute in above equation)
x^3 + y^3 + z^3 = 0 ×( x^2 + y^2 + z^2 - xy - yz - zx ) + 3xyz
x^3 + y^3 + z^3 = 3xyz
----------------------------------------
Hope it's help you :))
Similar questions