X+Z=2y and b^2=AC, then prove
a^y-z.b^z-x.c^x-y=1
Show me the process also guys
Answers
Answered by
18
Since x + z = 2y, z = 2y - x and:
b^(z - x) = b^(2y - 2x) = (b^2)^(y - x)
But b^2 = ac, so that becomes:
b^(z - x) = a^(y - x) c^(y - x)
a^(y - z) b^(z - x) c^(x - y) = a^(y - z + y - x) c^(x - y + y - x)
= a^(2y - z - x) c^0
= a^(2y - z - x)
But x + z = 2y also means 2y - z - x = 0, so the exponent on a is zero too
a^(y - z) b^(z - x) c^(x - y) = a^(0) = 1
This, of course, requires a,b,c to be nonzero.
b^(z - x) = b^(2y - 2x) = (b^2)^(y - x)
But b^2 = ac, so that becomes:
b^(z - x) = a^(y - x) c^(y - x)
a^(y - z) b^(z - x) c^(x - y) = a^(y - z + y - x) c^(x - y + y - x)
= a^(2y - z - x) c^0
= a^(2y - z - x)
But x + z = 2y also means 2y - z - x = 0, so the exponent on a is zero too
a^(y - z) b^(z - x) c^(x - y) = a^(0) = 1
This, of course, requires a,b,c to be nonzero.
SayanMridha:
Very very thanks
Answered by
36
Hi ,
x + z = 2y-----( 1 )
x - y = y - z -----( 2 )
b² = ac -------( 3 )
LHS= a^( y-z ) ×b^(z - x ) × c^( x - y )
= a^( x - y ) × b^( z - x ) × c^( x- y )
[from ( 2 ) ]
= ( ac )^( x - y ) × b^( z - x )
= ( b² )^( x - y ) × b^ ( z - x )
[ From ( 3 ) ]
= b ^ ( 2x - 2y ) × b^( z - x )
= b^ ( 2x - 2y + z - x )
= b ^ ( x + z - 2y )
= b ^ ( 2y - 2y )
[ From ( 1 ) ]
= b^0
= 1
= RHS
x + z = 2y-----( 1 )
x - y = y - z -----( 2 )
b² = ac -------( 3 )
LHS= a^( y-z ) ×b^(z - x ) × c^( x - y )
= a^( x - y ) × b^( z - x ) × c^( x- y )
[from ( 2 ) ]
= ( ac )^( x - y ) × b^( z - x )
= ( b² )^( x - y ) × b^ ( z - x )
[ From ( 3 ) ]
= b ^ ( 2x - 2y ) × b^( z - x )
= b^ ( 2x - 2y + z - x )
= b ^ ( x + z - 2y )
= b ^ ( 2y - 2y )
[ From ( 1 ) ]
= b^0
= 1
= RHS
Similar questions