x¹+x²+2x³= 12 3x¹+5x²+8x³= 50 x¹,x²,x³≤ 0 find the basic feasible solution
Answers
Answered by
0
Answer:
here is your answer
Step-by-step explanation:
Given equation
(x2 - 5x)2 - 7(x2 - 5x) + 6 = 0
Put x2 - 5x = y
∴ The given equation becomes
y2 - 7y + 6 = 0
⇒ y2 - 6y - y + 6 = 0
⇒ y(y - 6) -1(y - 6) = 0
⇒ y = 1, 6
But x2 - 5x = y
∴ x2 - 5x = 1
x2 - 5x - 1 = 0
Here a = 1, b = -5, c = -1
∴ x =
-b±b2-4ac2a
x =
-(-5)±25+42
x =
5±292
x2 - 5x = 6
⇒ x2 - 5x - 6 = 0
⇒ x2 - 6x + x - 6 = 0
⇒ x(x - 6) +1(x - 6) = 0
⇒ (x - 6) (x + 1) = 0
⇒ x = 6 or x = -1
Hence, the roots are -1, 6,
5±292.
Similar questions