Math, asked by badgurjargs, 2 months ago

x²+1/2x2=3

- Х - 1/x=?​

Answers

Answered by 196928
1

Answer:

1.1     Factoring  x2 - x + 2

The first term is,  x2  its coefficient is  1 .

The middle term is,  -x  its coefficient is  -1 .

The last term, "the constant", is  +2

Step-1 : Multiply the coefficient of the first term by the constant   1 • 2 = 2

Step-2 : Find two factors of  2  whose sum equals the coefficient of the middle term, which is   -1 .

     -2    +    -1    =    -3

     -1    +    -2    =    -3

     1    +    2    =    3

     2    +    1    =    3

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

1.2      Attempting Polynomial Long Division

  Attempted Long division of

     x2-x+2

  By :

     1-x

  Was aborted due to the followinf reason :

  Dividend and Divisor do not share same variable

Equation at the end of step

1

:

 (((2•(x2))-3x)-1) (x2-x+2)

 —————————————————-————————

       (x-1)         1-x  

STEP

2

:

Equation at the end of step

2

:

 ((2x2 - 3x) - 1)    (x2 - x + 2)

 ———————————————— -  ————————————

     (x - 1)            1 - x    

STEP

3

:

           2x2 - 3x - 1

Simplify   ————————————

              x - 1    

Trying to factor by splitting the middle term

3.1     Factoring  2x2 - 3x - 1

The first term is,  2x2  its coefficient is  2 .

The middle term is,  -3x  its coefficient is  -3 .

The last term, "the constant", is  -1

Step-1 : Multiply the coefficient of the first term by the constant   2 • -1 = -2

Step-2 : Find two factors of  -2  whose sum equals the coefficient of the middle term, which is   -3 .

     -2    +    1    =    -1

     -1    +    2    =    1

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Polynomial Long Division :

3.2    Polynomial Long Division

Dividing :  2x2-3x-1

                             ("Dividend")

By         :    x-1    ("Divisor")

dividend     2x2  -  3x  -  1

- divisor  * 2x1     2x2  -  2x    

remainder      -  x  -  1

- divisor  * -x0      -  x  +  1

remainder          -  2

Quotient :  2x-1

Remainder :  -2

Equation at the end of step

3

:

 (2x2 - 3x - 1)    (x2 - x + 2)

 —————————————— -  ————————————

     x - 1            1 - x    

STEP

4

:

Making Equivalent Fractions :

4.1      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      (2x2-3x-1)

  ——————————————————  =   ——————————

        L.C.M                x-1    

  R. Mult. • R. Num.      (x2-x+2) • -1

  ——————————————————  =   —————————————

        L.C.M                  x-1    

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

(2x2-3x-1) - ((x2-x+2) • -1)     3x2 - 4x + 1

————————————————————————————  =  ————————————

            x-1                     x - 1    

Trying to factor by splitting the middle term

4.3     Factoring  3x2 - 4x + 1

The first term is,  3x2  its coefficient is  3 .

The middle term is,  -4x  its coefficient is  -4 .

The last term, "the constant", is  +1

Step-1 : Multiply the coefficient of the first term by the constant   3 • 1 = 3

Step-2 : Find two factors of  3  whose sum equals the coefficient of the middle term, which is   -4 .

     -3    +    -1    =    -4    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  -1

                    3x2 - 3x - 1x - 1

Step-4 : Add up the first 2 terms, pulling out like factors :

                   3x • (x-1)

             Add up the last 2 terms, pulling out common factors :

                    1 • (x-1)

Step-5 : Add up the four terms of step 4 :

                   (3x-1)  •  (x-1)

            Which is the desired factorization

Canceling Out :

4.4    Cancel out  (x-1)  which appears on both sides of the fraction line.

Final result :

 3x - 1

Step-by-step explanation:

Hope this helps!

Please mark me as brainliest!

Similar questions