Math, asked by gurudevrajak685, 4 months ago

x²+1/x²-3 factories ​

Answers

Answered by bagkakali
0

Answer:

x^2+1/x^2-3

=(x-1/x)^2+2x.1/x-3

=(x-1/x)^2+2-3

=(x-1/x)^2-1

=(x-1/x)^2-(1)^2

=(x-1/x+1)(x-1/x-1)

Answered by anindyaadhikari13
2

Required Answer:-

Given To Factorise:

  •  \sf {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 3

Solution:

We have,

 \sf =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 3

This can be written as,

 \sf =  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 - 1

 \sf =  \bigg( {x}^{2}  +  \dfrac{1}{ {x}^{2} }  - 2 \bigg) - 1

 \sf =  \bigg( {(x)}^{2}  +   \bigg(\dfrac{1}{ {x}} \bigg)^{2}  - 2  \times x \times  \dfrac{1}{x} \bigg) - 1

This is in (a - b)² form. Factorise it.

 \sf =   \bigg(x -  \dfrac{1}{x}  \bigg)^{2}  -  {(1)}^{2}

Now, a² - b² = (a + b)(a - b). Factorise using this identity,

 \sf =   \bigg(x -  \dfrac{1}{x}   + 1\bigg) \bigg(x -  \dfrac{1}{x}  - 1 \bigg)

This is the required factorised form for the question.

Answer:

  •  \sf   \bigg(x -  \dfrac{1}{x}   + 1\bigg) \bigg(x -  \dfrac{1}{x}  - 1 \bigg)

Identity Used:

  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
Similar questions