Math, asked by kaluchaudhary747, 9 months ago

(x²+1/x²)-5(x-1/x)+2=0​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ roots \ of \ the \ equation \ are}

\sf{\dfrac{5-\sqrt{33}}{4} \ and \ \dfrac{5+\sqrt{33}}{4}.}

Given:

\sf{\leadsto{\dfrac{x^{2}+1}{x^{2}}-5(\dfrac{x-1}{x})+2=0}}

To find:

\sf{Roots \ of \ the \ equation.}

Solution:

\sf{\leadsto{\dfrac{x^{2}+1}{x^{2}}-5(\dfrac{x-1}{x})+2=0}}

\sf{Multiply \ throughout \ by \ x^{2} \ we \ get}

\sf{\leadsto{x^{2}+1-5x(x-1)+2=0}}

\sf{\leadsto{x^{2}+1-5x^{2}+5x+2x^{2}=0}}

\sf{\leadsto{-2x^{2}+5x+1=0}}

\sf{Here, \ a=-2, \ b=5 \ and \ c=1}

\sf{\therefore{b^{2}-4ac=5^{2}-4(-2)(1)}}

\sf{\therefore{b^{2}-4ac=25+8}}

\sf{\therefore{b^{2}-4ac=33}}

\sf{By \ quadratic \ formula}

\sf{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\sf{\leadsto{x=\dfrac{-5\pm\sqrt{33}}{-4}}}

\sf{\leadsto{x=\dfrac{5-\sqrt{33}}{4} \ or \ \dfrac{5+\sqrt{33}}{4}}}

\sf\purple{\tt{\therefore{The \ roots \ of \ the \ equation \ are}}}

\sf\purple{\tt{\dfrac{5-\sqrt{33}}{4} \ and \ \dfrac{5+\sqrt{33}}{4}.}}

Answered by Anonymous
0

Answer:

The roots of the equation are \sf{\dfrac{5-\sqrt{− 33}}{4} \ and \ \dfrac{5+\sqrt33}{4}}

Hope it helps you.

Similar questions