Math, asked by vedantsolanki201005, 3 months ago

(x²+(1/x²)) - 5(x-(1/x)) +2 = 0​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:\bigg( {x}^{2} + \dfrac{1}{ {x}^{2} }\bigg) - 5\bigg(x - \dfrac{1}{x}\bigg) + 2 = 0   - \: - (1)

 \red{\rm :\longmapsto\:Let  \: x - \dfrac{1}{x}  = y} \\   \blue{\rm \: on \: squaring \: both \: sides} \\   \red{\rm \:  {x}^{2}  + \dfrac{1}{ {x}^{2}}  -  2 =  {y}^{2}   }\\   \red{\rm \:  {x}^{2}  + \dfrac{1}{ {x}^{2} } =  {y}^{2}  +  2}

So,

Equation (1) can be rewritten as

\rm :\longmapsto\: {y}^{2}  +  2 - 5y + 2 = 0

\rm :\longmapsto\: {y}^{2}  - 5y + 4 = 0

\rm :\longmapsto\: {y}^{2}  - 4y - y + 4 = 0

\rm :\longmapsto\:y(y - 4) - 1(y - 4) = 0

\rm :\longmapsto\:(y - 4)(y - 1) = 0

\bf\implies \:y = 1 \:  \:  \: or \:  \:  \: y = 4

Case :- 1

When y = 1

\rm :\longmapsto\:x - \dfrac{1}{x}  = 1

\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{x}  = 1

\rm :\longmapsto\: {x}^{2}  - 1 = x

\rm :\longmapsto\: {x}^{2}  - x - 1 = 0

Using quadratic formula,

We know,

 \boxed{\bf \: x = \dfrac{ - b\:\pm \:  \sqrt{ {b}^{2} - 4ac}}{2a}}

Here,

  • a = 1

  • b = - 1

  • c = - 1

On substituting all these values in above formula, we get

\rm :\longmapsto\:x = \dfrac{ - ( - 1)  \:  \pm \:   \sqrt{ {( - 1)}^{2}  - 4 \times 1 \times ( - 1)}}{2 \times 1}

\rm :\longmapsto\:x = \dfrac{1\:  \pm \:   \sqrt{1 + 4}}{2}

\rm :\longmapsto\:x = \dfrac{1\:  \pm \:   \sqrt{5}}{2}

\bf\implies \:x = \dfrac{1 \:  +  \:  \sqrt{5} }{2} \:  \:  \:  or  \:  \:  \: \dfrac{1 \:  -  \:  \sqrt{5} }{2}

Case :- 2

When y = 4

\rm :\longmapsto\:x - \dfrac{1}{x} = 4

\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{x}  = 4

\rm :\longmapsto\: {x}^{2}  - 1 = 4x

\rm :\longmapsto\: {x}^{2}  - 4x - 1 = 0

Again, using quadratic formula,

We know,

 \boxed{\bf \: x = \dfrac{ - b\:\pm \:  \sqrt{ {b}^{2} - 4ac}}{2a}}

Here,

  • a = 1

  • b = - 4

  • c = - 1

On substituting all these values in above formula, we have

\rm :\longmapsto\:x = \dfrac{ - ( - 4)  \:  \pm \:   \sqrt{ {( - 4)}^{2}  - 4 \times 1 \times ( - 1)}}{2 \times 1}

\rm :\longmapsto\:x = \dfrac{4\:  \pm \:   \sqrt{16 + 4}}{2}

\rm :\longmapsto\:x = \dfrac{4\:  \pm \:   \sqrt{20}}{2}

\rm :\longmapsto\:x = \dfrac{4\:  \pm \:   \sqrt{2 \times 2 \times 5}}{2}

\rm :\longmapsto\:x = \dfrac{4\:  \pm \:   2\sqrt{5}}{2}

\rm :\longmapsto\:x = 2 \:  \pm \:  \sqrt{5}

\bf\implies \:x = 2 +  \sqrt{5}  \:  \:  \: or \:  \:  \: 2 -  \sqrt{5}

Hence,

\bf\implies\:x=\dfrac{1+\sqrt{5} }{2} \: or \:\dfrac{1-\sqrt{5} }{2}\:or\:2+  \sqrt{5}\:or\:2-\sqrt{5}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac

Similar questions