Math, asked by hyperxman2007, 3 months ago

x²+1/x²=51 find x-1/x​

Answers

Answered by MagicalBeast
14

Given :

 \sf \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   \: = \:  51

To find :

 \sf \: x -  \dfrac{1}{x}

Identity used :

  • ( a+b )² = a² + b² - 2ab

Solution :

\sf \:  \: x -  \dfrac{1}{x}

Taking square

\sf \:  \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}

\sf \implies \:\bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}   \: =   \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2 \times \bigg( \dfrac{1}{x}  { \bigg)}  \bigg( x \bigg)

\sf \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}   \: =  \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2

As we are given that

 \bigg[  \: \sf  \:  {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:   = \:51 \:  \: \bigg]

Therefore

\sf \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}  \: =   \: {x}^{2}  \: +  \:  \bigg( \dfrac{1}{x}  { \bigg)}^{2}  \:  -  \:2 \:  =  \: 51 - 2

\sf \implies \:   \: \bigg( x -  \dfrac{1}{x}  { \bigg)}^{2}  = \:  49

 \sf \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)} \:  =  \sqrt{49}

 \sf \implies \: \bigg( x -  \dfrac{1}{x}  { \bigg)} \:  =   \: \pm \: 7

ANSWER : ± 7

Similar questions