Math, asked by Tanisha1612, 1 year ago

x2+1/x2=66 find value of x3-1/x3

Answers

Answered by gamer1234
30
This is the answer....
Attachments:
Answered by pinquancaro
19

Answer:

The required value is x^3-\frac{1}{x^3}=536

Step-by-step explanation:

Given : x^2+\frac{1}{x^2}=66

To find : The value of  x^3-\frac{1}{x^3}

Solution :

x^2+\frac{1}{x^2}=66

Subtract and add 2\times x\times \frac{1}{x}

x^2+\frac{1}{x^2}-2\times x\times \frac{1}{x}+2\times x\times \frac{1}{x}=66

(x-\frac{1}{x})^2=66-2\times x\times \frac{1}{x}

(x-\frac{1}{x})^2=64

Taking root both side,

x-\frac{1}{x}=8

Cubing both side,

(x-\frac{1}{x})^3=8^3

x^3-\frac{1}{x^3}-3\times x\times \frac{1}{x}(x-\frac{1}{x})=512

x^3-\frac{1}{x^3}-3\times(8)=512

x^3-\frac{1}{x^3}=512+24

x^3-\frac{1}{x^3}=536

So, The required value is x^3-\frac{1}{x^3}=536

Similar questions