Math, asked by padhyshrutishree, 1 month ago

X2 + 1/x2 = 7 find x +1/x and x - 1/x​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Answer:}}

       \boxed{x + \frac{1}{x} = +3,-3 }, \text{ }\boxed{x-\frac{1}{x} = \sqrt5}

       \underline{\bold{Step-by-step-explaination:}}

       \text{The given equation is: }

       \boxed{x^{2} + \frac{1}{x^{2}} = 7} \text{ ------(i)}

       \text{We know that }(a+b)^{2} = a^{2} + b^{2} + 2ab

\implies \boxed{(x + \frac{1}{x})^{2} = (x)^{2} + (\frac{1}{x})^{2} + 2(x)(\frac{1}{x})   }

\implies \boxed{(x + \frac{1}{x})^{2} = x^{2} + \frac{1}{x^{2}} + 2 }

       \text{From (i)}

\implies \boxed{(x + \frac{1}{x})^{2} = 7 + 2}

\implies \boxed{(x + \frac{1}{x})^{2} = 9}

\implies \boxed{x + \frac{1}{x} = \sqrt{9} }

\implies \boxed{x + \frac{1}{x} = +3,-3 }

       \text{We know that }(a-b)^{2} = a^{2} + b^{2} - 2ab

\implies \boxed{(x-\frac{1}{x})^{2} = (x)^{2} + (\frac{1}{x})^{2}- 2(x)(\frac{1}{x} )  }

\implies \boxed{(x-\frac{1}{x})^{2} = x^{2} + \frac{1}{x^{2}} - 2}

       \text{From (i)}

\implies \boxed{(x-\frac{1}{x})^{2} = 7-2}

\implies \boxed{(x-\frac{1}{x})^{2} = 5}

\implies \boxed{x-\frac{1}{x} = \sqrt5}

   

Similar questions